94 Taylor's formula

The following is taken from AMBS Ch 28.15 and Problem 28.11.

Theorem 94.1. (Taylor's formula) Suppose that f has Lipschitz continuous derivative of order n + 1 on the interval [a, b] and let $\bar{x} \in (a, b)$. Then f satisfies Taylor's formula of order n at \bar{x} :

$$f(x) = f(\bar{x}) + f'(\bar{x})(x - \bar{x}) + f''(\bar{x})\frac{(x - \bar{x})^2}{2} + f'''(\bar{x})\frac{(x - \bar{x})^3}{3!} + \dots + f^{(n)}(\bar{x})\frac{(x - \bar{x})^n}{n!} + R_n(x, \bar{x}) = \sum_{k=0}^n f^{(k)}(\bar{x})\frac{(x - \bar{x})^k}{k!} + R_n(x), \quad \text{for all } x \in [a, b],$$

where the remainder R_n is given by

(94.1)
$$R_n(x) = \int_{\bar{x}}^x \frac{(x-y)^n}{n!} f^{(n+1)}(y) \, dy$$

(94.2)
$$= f^{(n+1)}(\hat{x}) \frac{(x-\bar{x})^{n+1}}{(n+1)!},$$

and \hat{x} is an unknown number between x and \bar{x} .

The polynomial

$$P_n(x) = \sum_{k=0}^n f^{(k)}(\bar{x}) \frac{(x-\bar{x})^k}{k!}$$

is called the Taylor polynomial of f of degree n at \bar{x} . Remember that n factorial ("n fakultet") means

$$n! = 1 \cdot 2 \cdot 3 \cdots n, \quad 0! = 1.$$

The Taylor formula expresses the function as a sum of two terms:

$$f(x) = P_n(x) + R_n(x),$$

where the polynomial is simple to compute with, and where the remainder has a more complicated, perhaps unknown, dependence on x. Note that both the Taylor polynomial and the remainder also depend on \bar{x} but we always consider \bar{x} as a fixed number. Therefore we write $R_n(x)$ instead of $R_n(x, \bar{x})$.

The main importance of the formula is that it gives a formula for the remainder, which shows that the remainder is smaller than the terms in the polynomial, when x is close to \bar{x} . For example, if we know that

$$|f^{(n+1)}(x)| \le M, \quad \text{for all } x \in [a, b],$$

then, by (94.2),

(94.3)
$$|R_n(x)| = |f^{(n+1)}(\hat{x})| \frac{|x-\bar{x}|^{n+1}}{(n+1)!} \le M \frac{|x-\bar{x}|^{n+1}}{(n+1)!}.$$

This means that we can often compute with the Taylor polynomial, which is simple to do, and then draw conclusions about f. This also means that we can write

(94.4)
$$f(x) = P_n(x) + B_n(x)(x - \bar{x})^{n+1}$$

where the function B_n is bounded near \bar{x} :

$$|B_n(x)| = |f^{(n+1)}(\hat{x})| \frac{1}{(n+1)!} \le \frac{M}{(n+1)!}$$

This form of Taylor's formula makes it easy compute limits as $x \to \bar{x}$, see Problem 94.3.

Note the two forms of the remainder, (94.1) and (94.2). The second one is often easier to use. Note also that we need not know \hat{x} , it is usually sufficient to have a rough estimate of $f^{(n+1)}(\hat{x})$ as in (94.3).

Proof. We begin by recalling from the Fundamental Theorem of Calculus:

$$f(x) = f(\bar{x}) + \int_{\bar{x}}^{x} f'(y) \, dy$$

Note that this is Taylor's formula of order 0: $P_0(x) = f(\bar{x})$ is Taylor's polynomial of degree 0 with remainder $R_0(x) = \int_{\bar{x}}^x f'(y) \, dy$. To obtain Taylor's formula of order 1 we integrate by parts:

$$\begin{split} f(x) &= f(\bar{x}) + \int_{\bar{x}}^{x} 1 \cdot f'(y) \, dy \\ &= f(\bar{x}) + \int_{\bar{x}}^{x} \frac{d}{dy} (y - x) f'(y) \, dy \\ &= f(\bar{x}) + \left[(y - x) f'(y) \right]_{\bar{x}}^{x} - \int_{\bar{x}}^{x} (y - x) f''(y) \, dy \\ &= \underbrace{f(\bar{x}) + f'(\bar{x})(x - \bar{x})}_{=P_{1}(x)} + \underbrace{\int_{\bar{x}}^{x} (x - y) f''(y) \, dy}_{=R_{1}(x)}. \end{split}$$

Note that this is the same as our definition of the derivative:

$$f(x) = f(\bar{x}) + f'(\bar{x})(x - \bar{x}) + E_f(x, \bar{x}).$$

We continue and integrate by parts once more using $(x - y) = -\frac{d}{dy} \frac{(x - y)^2}{2}$:

$$\begin{aligned} f(x) &= f(\bar{x}) + f'(\bar{x})(x - \bar{x}) - \int_{\bar{x}}^{x} \frac{d}{dy} \frac{(x - y)^{2}}{2} f''(y) \, dy \\ &= f(\bar{x}) + f'(\bar{x})(x - \bar{x}) - \left[\frac{(x - y)^{2}}{2} f''(y)\right]_{\bar{x}}^{x} + \int_{\bar{x}}^{x} \frac{(x - y)^{2}}{2} f'''(y) \, dy \\ &= f(\bar{x}) + f'(\bar{x})(x - \bar{x}) + f''(\bar{x})\frac{(x - \bar{x})^{2}}{2} + \int_{\bar{x}}^{x} \frac{(x - y)^{2}}{2} f'''(y) \, dy \\ &= P_{2}(x) + R_{2}(x). \end{aligned}$$

Repeating this once more we get:

$$f(x) = f(\bar{x}) + f'(\bar{x})(x - \bar{x}) + f''(\bar{x})\frac{(x - \bar{x})^2}{2} + f'''(\bar{x})\frac{(x - \bar{x})^3}{2 \cdot 3} + \int_{\bar{x}}^x \frac{(x - y)^3}{2 \cdot 3} f^{(4)}(y) \, dy$$

= $P_3(x) + R_3(x)$.

After n steps of this procedure we have:

$$f(x) = f(\bar{x}) + f'(\bar{x})(x - \bar{x}) + f''(\bar{x})\frac{(x - \bar{x})^2}{2} + f'''(\bar{x})\frac{(x - \bar{x})^3}{3!} + \dots + f^{(n)}(\bar{x})\frac{(x - \bar{x})^n}{n!} + \int_{\bar{x}}^x \frac{(x - y)^n}{n!} f^{(n+1)}(y) \, dy = P_n(x) + R_n(x).$$

This is Taylor's formula of order n with remainder in the form (94.1).

In order to obtain the alternative form (94.2) we first make a transformation of variable:

$$R_n(x) = \int_{\bar{x}}^x \frac{(x-y)^n}{n!} f^{(n+1)}(y) \, dy = \begin{cases} z = \frac{(x-y)^{n+1}}{(n+1)!} \\ dz = -\frac{(x-y)^n}{n!} \, dy \\ y = \bar{x} \implies z = \bar{z} = \frac{(x-\bar{x})^{n+1}}{(n+1)!} \\ y = x \implies z = 0 \end{cases}$$
$$= \int_0^{\bar{z}} f^{(n+1)}(y(z)) \, dz,$$

and then use the mean value theorem for integrals, which says that there is an unknown number \hat{z} between 0 and \bar{z} such that

$$R_n(x) = \int_0^{\bar{z}} f^{(n+1)}(y(z)) \, dz = f^{(n+1)}(y(\hat{z})) \int_0^{\bar{z}} \, dz = f^{(n+1)}(y(\hat{z})) \bar{z} = f^{(n+1)}(\hat{x})) \frac{(x-\bar{x})^{n+1}}{(n+1)!}$$

where $\hat{x} = y(\hat{z})$, that is, $\hat{z} = \frac{(x-\hat{x})^{n+1}}{(n+1)!}$.

Problems

94.1. Write down Taylor's formula of order n at $\bar{x} = 0$ for the following functions:

- (a) $\log(1+x)$
- (b) $\exp(x)$
- (c) $\sin(x)$
- (d) $\cos(x)$

94.2. Use Taylor's formula of order 2 (or 3 or 4) to compute approximations of the following. Estimate the error.

- (a) $\log(1.1)$
- (b) $\exp(-0.1)$
- (c) $\sin(0.1)$
- (d) $\cos(0.1)$

94.3. Compute the following limits.

 $-x^{2}$

(a)
$$\lim_{x \to 0} \frac{\sin(x)}{x}$$

(b) $\lim_{x \to 0} \frac{1 - \cos(x)}{x^2}$
(c) $\lim_{x \to 0} \frac{e^x - 1 - \sin(x)}{\log(1 + x) - x}$
(d) $\lim_{x \to 0} \frac{\log(1 + x^2) - x}{x^4}$

Answers and solutions

94.1.

(a)

$$\begin{split} f(x) &= \log(1+x) & f(0) = 0 \\ f'(x) &= \frac{1}{1+x} & f'(0) = 1 \\ f''(x) &= \frac{-1}{(1+x)^2} & f''(0) = -1 \\ f'''(x) &= \frac{(-1)(-2)}{(1+x)^3} = \frac{(-1)^2 2!}{(1+x)^3} & f'''(0) = 2 = (-1)^2 2! \\ f''''(x) &= \frac{(-1)(-2)(-3)}{(1+x)^4} = \frac{(-1)^3 3!}{(1+x)^4} & f''''(0) = -6 = (-1)^3 3! \\ \vdots & \vdots \\ f^{(k)}(x) &= \frac{(-1)^{k-1}(k-1)!}{(1+x)^k} & f^{(k)}(0) = (-1)^{k-1}(k-1)! \end{split}$$

$$\log(1+x) = 0 + x + (-1)\frac{x^2}{2!} + (-1)^2 2! \frac{x^3}{3!} + (-1)^3 3! \frac{x^4}{4!} + \dots + (-1)^{n-1} (n-1)! \frac{x^n}{n!} + R_n(x,0)$$
$$= x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1} \frac{x^n}{n} + R_n(x,0)$$
$$= \sum_{k=0}^n (-1)^{k-1} \frac{x^k}{k} + R_n(x,0)$$
$$R_n(x,0) = \frac{(-1)^n n!}{(1+\hat{x})^{n+1}} \frac{x^{n+1}}{(n+1)!} = \frac{(-1)^n}{(1+\hat{x})^{n+1}} \frac{x^{n+1}}{n+1}, \text{ where } \hat{x} \text{ is between } x \text{ and } 0.$$

(b)

$$\exp(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots + \frac{x^n}{n!} + R_n(x,0)$$
$$R_n(x,0) = e^{\hat{x}} \frac{x^{n+1}}{(n+1)!}, \text{ where } \hat{x} \text{ is between } x \text{ and } 0$$

(c)

$$\begin{array}{ll} f(x) = \sin(x) & (k = 0, \ m = 1) & f(0) = 0 \\ f'(x) = \cos(x) & (k = 1, \ m = 1) & f'(0) = 1 \\ f''(x) = -\sin(x) & (k = 2, \ m = 2) & f''(0) = 0 \\ f'''(x) = -\cos(x) & (k = 3, \ m = 2) & f'''(0) = -1 \\ f''''(x) = \sin(x) & (k = 4, \ m = 3) & f''''(0) = 0 \\ f^{(5)}(x) = \cos(x) & (k = 5, \ m = 3) & f^{(5)}(0) = 1 \\ \vdots & \vdots \\ f^{(2m-2)}(x) = (-1)^{m-1}\sin(x) & (k = 2m - 2 \text{ even}) & f^{(2m-2)}(0) = 0 \\ f^{(2m-1)}(x) = (-1)^{m-1}\cos(x) & (k = 2m - 1 \text{ odd}) & f^{(2m-1)}(0) = (-1)^{m-1} \end{array}$$

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + R_{2n}(x,0)$$
$$R_{2n}(x,0) = (-1)^n \cos(\hat{x}) \frac{x^{2n+1}}{(2n+1)!}, \quad \text{where } \hat{x} \text{ is between } x \text{ and } 0$$

(d)

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + R_{2n+1}(x,0)$$
$$R_{2n+1}(x,0) = (-1)^{n+1} \cos(\hat{x}) \frac{x^{2n+2}}{(2n+2)!}, \text{ where } \hat{x} \text{ is between } x \text{ and } 0$$

94.2.

(a) Taylor of order 2:

$$\log(1+x) = x - \frac{x^2}{2} + R_2(x,0)$$

$$R_2(x,0) = \frac{1}{(1+\hat{x})^3} \frac{x^3}{3}$$

$$\log(1.1) = \log(1+0.1) \approx 0.1 - \frac{(0.1)^2}{2} = 0.1 - 0.005 = 0.095$$

$$|R_2(0.1,0)| = \left|\frac{1}{(1+\hat{x})^3} \frac{(0.1)^3}{3}\right| = \frac{1}{(1+\hat{x})^3} \frac{(0.1)^3}{3} \le \frac{1}{3} \cdot 10^{-3}$$

because $\hat{x} \in [0, 0.1]$ implies $1 + \hat{x} \ge 1$, so that $\frac{1}{(1+\hat{x})^3} \le 1$. Thus, $\log(1.1) \approx 0.095$ with 3 correct decimals.

(b) Taylor of order 2:

$$\exp(x) = 1 + x + \frac{x^2}{2} + R_2(x, 0)$$
$$R_2(x, 0) = e^{\hat{x}} \frac{x^3}{3!}$$
$$\exp(-0.1) \approx 1 + (-0.1) + \frac{(-0.1)^2}{2} = 0.905$$
$$|R_2(-0.1, 0)| = \left| e^{\hat{x}} \frac{(-0.1)^3}{3!} \right| = \frac{1}{6} e^{\hat{x}} 10^{-3} \le \frac{1}{6} \cdot 10^{-3}$$

because $\hat{x} \in [-0.1, 0]$ implies $e^{\hat{x}} \leq 1$. Thus, $\exp(-0.1) \approx 0.905$ with 3 correct decimals.

(c) Taylor of order 4:

$$\sin(x) = x - \frac{x^3}{6} + R_4(x, 0)$$

$$R_4(x, 0) = (-1)^2 \cos(\hat{x}) \frac{x^5}{5!}$$

$$\sin(0.1) \approx 0.1 - \frac{(0.1)^3}{6} \approx 0.099833333$$

$$|R_4(0.1, 0)| = \left| (-1)^2 \cos(\hat{x}) \frac{(0.1)^5}{5!} \right| = |\cos(\hat{x})| \frac{1}{120} 10^{-5} \le \frac{1}{120} \cdot 10^{-5} < 10^{-7}$$

because $|\cos(\hat{x})| \le 1$. Thus, $\sin(0.1) \approx 0.099833$ with 6 correct decimals.

94.3.

(a) By using (94.4) and Problem 94.1(c) we get

$$\lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0} \frac{x + B_3(x)x^3}{x} = \lim_{x \to 0} (1 + B_3(x)x^2) = 1$$

Note that $B_3(x) = -\cos(\hat{x})/3$ is bounded near x = 0 because $|B_3(x)| \le 1/3$.

- (b) 1
- (c) -1
- (d) -1/2

2005-11-27 /stig