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Lecture plan

» Matrix notation

- Assembling the matrices

» Mapping from a reference element
» Solving nonlinear problems

» Time-stepping

« General solution strategy
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Matrix notation
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The stiffness matrix .S

The stiffness matrix S Is given by

g = /Q () Vi(x) - Vii(x) dr.

In one dimension, with 2 = (a, b), we have

S = [ elaejla)iito) do
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The load vectorb

The load vector b Is given by

by — /Q F(@)on() da.
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Example: Poisson’s equation

For Poisson’s equation, —V - (e(z)Vu(zx)) = f(x)
In €2, we obtain
5¢ =0,

where S Is the stiffness matrix, b is the load
vector and ¢ Is the vector containing the degrees
of freedom for the finite element solution U given

by
Ulz) = ) _&wi@)
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The mass matrix M

The mass matrix M Is given by

Mij = /Q%(flf)@i(x) da.
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The convection matrix B

The convection matrix B Is given by

Bi; = /Qﬁ(m) - Vj(z)pi(x) dz.

In one dimension, with 2 = (a, b), we have

Bi; :/ B(z)e;(w)pi(z) dz.
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Example: convection—diffusion

Using matrix notation, the convection-diffusion
equation

w(x,t) + B(x) - Vu(x,t) — V- (e(x)Vu(x)) = f(x),

can be written in the form

ME(t) + BE(t) + SE(t) = 0.
This is an ODE for the degrees of freedom £(¢).
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General bilinear form af(-, -)

In general the matrix Ay, representing a bilinear
form

a(u,v) = (A(u), v),
IS given by
(An)ij = alwj; ¢i)-
and the vector b, representing a linear form

L(v) = (f,v),
IS given by
(br)i = L(4).
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Assembling the matrices
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Computing (Ay);;

Note that
(Ah)ij — a(@]a@z): QA(QOJ)Saz dx
= 3 [ Alepaide= Y ales p0x
KeT K KeT

lterate over all elements K and for each element
K compute the contributions to all (A4;);, for
which ¢, and ¢, are supported within K.
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Assembling 4,

for all elements K € T
for all test functions ¢, on K
for all trial functions ¢; on K
1. Compute I = a(p;, i)k
2. Add I to (Ap)i;
end
end
end
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Assemblingb

for all elements K € T
for all test functions ¢, on K
1. Compute [ = L(p;)x
2. Add I to b,
end
end
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Mapping from a
reference element
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|Isoparametric mapping

- We want to compute basis functions and
Integrals on a reference element K,

- Most common mapping Is isoparametric
mapping (use the basis functions also to
define the geometry):

r(X) = F(X) = Z@(X):ci

 Linear basis functions = Affine mapping:
r(X)=F(X)=BX+b
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Piola mapping

 Plola mapping:

1
 detF’

- Affine mapping: F'(X) = I’ constant (B)

7(X) = P(X) F'(y o FY)
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The mapping F' : Kp — K
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Some basic calculus

Let v = v(z) be a function defined on a domain ¢
and let

F:Qy— Q

be a (differentiable) mapping from a domain €2,
to 2. We then have z = F(X) and

/Qv(:c) dr = /Q v(F(X)) | det 0F;/0X;| dX

= /U(F(X))|det8x/0X|dX.
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Affine mapping

When the mapping Is affine, the determinant Is
constant:

| ei@)ta) da

= [ e FO)GF(0) | deton/0X| X
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Transformation of derivatives

To compute derivatives, we use the
transformation

v, - (2% Tv
X — aX €T

v (9% _Tv
T\ X A

or
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The stiffness matrix

For the computation of the stiffness matrix, this
means that we have

/K (2)Vp;(z) - Vi(x) da

B /K 0(X) [(02/0X) T Vx@d(X)| - |(02/0X) T Vxp(X)|
| det (92/0X) | dX.

Note that we have used the short notation
V =V,.
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Computing integrals on K

» The Integrals on K, can be computed exactly
or by quadrature.

» In some cases quadrature Is the only option.

Standard form:
/ v(X) dX =~ | Ky Zwiv(Xi)
Ko i=1

where {w;}!_, are quadrature weights and
{X'}" . are quadrature points in K.
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Solving nonlinear problems
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Nonlinear problems

If the problem Is nonlinear, for example,
—V - (|[Vu| Vu) = f,

we rewrite the problem as
—V - (|Va| Vu) = f.

As before, we obtain a linear system A,¢ = b, but
now

Ap = Ap(a) = Ap(u) = Ap(§),
.e. Ap(§)E =T
I
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Fixed-point iteration

To solve a nonlinear problem F'(¢) = 0, we
rewrite the problem in fixed-point form

£ =9(§),

and apply fixed-point iteration as follows:

¢ = aclever guess
&= g(&)
& = g(&)
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Fixed-point iteration

According to the contraction-mapping theorem,
fixed-point iteration converges if

L, <1,
where L, Is a Lipschitz-constant of g:

19(&) — gn)|l < Lyll€ —nll-
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Basic algorithm

£ =¢"

d=2-tol

while d > tol
Enew = 9(§)
d = |[&new — €]
& = Enew

end
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Newton’'s method

Newton’s method Is a special type of fixed-point
iteration for F'(¢) = 0, where we take

g(€) =& — (OF/0¢) " F(£).

Usually converges faster than basic fixed-point
iteration, but requires more work to implement.
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Time-stepping
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A shortcut

Replace ¢ by (£(t,) — &(t,_1))/kn, and replace ¢
by
° &
 &(t,): backward / implicit Euler
* (&(tp—1) + &(tn))/2: Crank-Nicolson / ¢G(1)

(t,,—1): forward / explicit Euler
(tn
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Example: backward Euler

Discretizing the heat equation ©« — Au = f In
space, we have

ME+ S€=b.

Using the implicit Euler method for time-stepping,
we obtain

M(&(tn) — E(tn-1))/kn + 5E(tn) = 0(tn),

or

(M 4 k,S)E(t)) = ME(ty—1) + knb(ty).
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Basic algorithm

to =0
n=1
while t < T
tn =th 1+ Kk
= ...
n=n-4+1
end
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General solution strategy

We only allow PDEs in the form:

= f(u).

ME+SE=b= &= f(§) = M (b — S¢)

Then we can give this f to a general ODE solver
which can do time adaptivity, fixed-point iteration
and Newton’s method where necessary.
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