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Lecture plan

• Matrix notation
• Assembling the matrices
• Mapping from a reference element
• Solving nonlinear problems
• Time-stepping
• General solution strategy
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Matrix notation
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The stiffness matrixS

The stiffness matrix S is given by

Sij =

∫

Ω

ε(x)∇ϕj(x) · ∇ϕ̂i(x) dx.

In one dimension, with Ω = (a, b), we have

Sij =

∫ b

a

ε(x)ϕ′
j(x)ϕ̂′

i(x) dx.

PDE Project Course 05/06 – p. 4



The load vectorb

The load vector b is given by

bi =

∫

Ω

f(x)ϕ̂i(x) dx.
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Example: Poisson’s equation

For Poisson’s equation, −∇ · (ε(x)∇u(x)) = f(x)
in Ω, we obtain

Sξ = b,

where S is the stiffness matrix, b is the load
vector and ξ is the vector containing the degrees
of freedom for the finite element solution U given
by

U(x) =
N

∑

j=1

ξjϕj(x).
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The mass matrixM

The mass matrix M is given by

Mij =

∫

Ω

ϕj(x)ϕ̂i(x) dx.
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The convection matrixB

The convection matrix B is given by

Bij =

∫

Ω

β(x) · ∇ϕj(x)ϕ̂i(x) dx.

In one dimension, with Ω = (a, b), we have

Bij =

∫ b

a

β(x)ϕ′
j(x)ϕ̂i(x) dx.

PDE Project Course 05/06 – p. 8



Example: convection–diffusion

Using matrix notation, the convection-diffusion
equation

u̇(x, t) + β(x) · ∇u(x, t) −∇ · (ε(x)∇u(x)) = f(x),

can be written in the form

Mξ̇(t) + Bξ(t) + Sξ(t) = b.

This is an ODE for the degrees of freedom ξ(t).
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General bilinear form a(·, ·)

In general the matrix Ah, representing a bilinear
form

a(u, v) = (A(u), v),

is given by
(Ah)ij = a(ϕj, ϕ̂i).

and the vector bh representing a linear form

L(v) = (f, v),

is given by
(bh)i = L(ϕ̂i).
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Assembling the matrices
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Computing (Ah)ij

Note that

(Ah)ij = a(ϕj, ϕ̂i) =

∫

Ω

A(ϕj)ϕ̂i dx

=
∑

K∈T

∫

K

A(ϕj)ϕ̂i dx =
∑

K∈T

a(ϕj, ϕ̂i)K .

Iterate over all elements K and for each element
K compute the contributions to all (Ah)ij, for
which ϕj and ϕ̂i are supported within K.
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AssemblingAh

for all elements K ∈ T

for all test functions ϕ̂i on K

for all trial functions ϕj on K

1. Compute I = a(ϕj, ϕ̂i)K

2. Add I to (Ah)ij

end

end

end
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Assemblingb

for all elements K ∈ T

for all test functions ϕ̂i on K

1. Compute I = L(ϕ̂i)K

2. Add I to bi

end

end
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Mapping from a
reference element
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Isoparametric mapping

• We want to compute basis functions and
integrals on a reference element K0

• Most common mapping is isoparametric
mapping (use the basis functions also to
define the geometry):

x(X) = F (X) =
n

∑

i=1

φi(X)xi

• Linear basis functions ⇒ Affine mapping:
x(X) = F (X) = BX + b
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Piola mapping

• Piola mapping:

x(X) = P (X) =
1

detF ′
F ′(ψ ◦ F−1)

• Affine mapping: F (X) ⇒ F ′ constant (B)
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The mappingF : K0 → K

X1 = (0, 0) X2 = (1, 0)

X3 = (0, 1)

X

x = F (X)

F (X) = x1ϕ0
1(X) + x2ϕ0

2(X) + x3ϕ0
3(X)

F

x1

x2

x3

K0

K
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Some basic calculus

Let v = v(x) be a function defined on a domain Ω
and let

F : Ω0 → Ω

be a (differentiable) mapping from a domain Ω0

to Ω. We then have x = F (X) and
∫

Ω

v(x) dx =

∫

Ω0

v(F (X)) | det ∂Fi/∂Xj| dX

=

∫

Ω0

v(F (X)) | det ∂x/∂X| dX.
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Affine mapping

When the mapping is affine, the determinant is
constant:

∫

K

ϕj(x)ϕ̂i(x) dx

=

∫

K0

ϕj(F (X))ϕ̂i(F (X)) | det ∂x/∂X| dX

= | det ∂x/∂X|

∫

K0

ϕ0

j(X)ϕ̂0

i (X) dX
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Transformation of derivatives

To compute derivatives, we use the
transformation

∇X =

(

∂x

∂X

)>

∇x,

or

∇x =

(

∂x

∂X

)−>

∇X .
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The stiffness matrix

For the computation of the stiffness matrix, this
means that we have

∫

K

ε(x)∇ϕj(x) · ∇ϕ̂i(x) dx

=

∫

K0

ε0(X)
[

(∂x/∂X)−> ∇Xϕ0

j(X)
]

·
[

(∂x/∂X)−> ∇Xϕ̂0

i (X)
]

· · ·

· · · | det (∂x/∂X) | dX.

Note that we have used the short notation

∇ = ∇x.
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Computing integrals onK0

• The integrals on K0 can be computed exactly
or by quadrature.

• In some cases quadrature is the only option.

Standard form:
∫

K0

v(X) dX ≈ |K0|

n
∑

i=1

wiv(X i)

where {wi}
n
i=1

are quadrature weights and
{X i}n

i=1
are quadrature points in K0.
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Solving nonlinear problems
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Nonlinear problems

If the problem is nonlinear, for example,

−∇ · (|∇u| ∇u) = f,

we rewrite the problem as

−∇ · (|∇ũ| ∇u) = f.

As before, we obtain a linear system Ahξ = b, but
now

Ah = Ah(ũ) = Ah(u) = Ah(ξ),

i.e. Ah(ξ)ξ = f .

PDE Project Course 05/06 – p. 25



Fixed-point iteration

To solve a nonlinear problem F (ξ) = 0, we
rewrite the problem in fixed-point form

ξ = g(ξ),

and apply fixed-point iteration as follows:

ξ0 = a clever guess

ξ1 = g(ξ0)

ξ2 = g(ξ1)

. . .
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Fixed-point iteration

According to the contraction-mapping theorem,
fixed-point iteration converges if

Lg < 1,

where Lg is a Lipschitz-constant of g:

‖g(ξ) − g(η)‖ ≤ Lg‖ξ − η‖.
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Basic algorithm

ξ = ξ0

d = 2 · tol

while d > tol

ξnew = g(ξ)

d = ‖ξnew − ξ‖

ξ = ξnew

end

PDE Project Course 05/06 – p. 28



Newton’s method

Newton’s method is a special type of fixed-point
iteration for F (ξ) = 0, where we take

g(ξ) = ξ − (∂F/∂ξ)−1 F (ξ).

Usually converges faster than basic fixed-point
iteration, but requires more work to implement.
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Time-stepping
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A shortcut

Replace ξ̇ by (ξ(tn) − ξ(tn−1))/kn, and replace ξ
by

• ξ(tn−1): forward / explicit Euler

• ξ(tn): backward / implicit Euler

• (ξ(tn−1) + ξ(tn))/2: Crank-Nicolson / cG(1)
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Example: backward Euler

Discretizing the heat equation u̇ − ∆u = f in
space, we have

Mξ̇ + Sξ = b.

Using the implicit Euler method for time-stepping,
we obtain

M(ξ(tn) − ξ(tn−1))/kn + Sξ(tn) = b(tn),

or

(M + knS)ξ(tn) = Mξ(tn−1) + knb(tn).
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Basic algorithm

t0 = 0

n = 1

while t < T

tn = tn−1 + k

ξn = . . .

n = n + 1

end
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General solution strategy

We only allow PDEs in the form:

u̇ = f(u).

Mξ̇ + Sξ = b ⇒ ξ̇ = f(ξ) = M−1(b − Sξ)

Then we can give this f to a general ODE solver
which can do time adaptivity, fixed-point iteration
and Newton’s method where necessary.
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