
PDE Project Course
2. Implementation of the finite element method

Johan Jansson

johanjan@math.chalmers.se

Division of Computational Technology

PDE Project Course 05/06 – p. 1

Lecture plan

• Matrix notation
• Assembling the matrices
• Mapping from a reference element
• Solving nonlinear problems
• Time-stepping
• General solution strategy

PDE Project Course 05/06 – p. 2

Matrix notation

PDE Project Course 05/06 – p. 3

The stiffness matrixS

The stiffness matrix S is given by

Sij =

∫

Ω

ε(x)∇ϕj(x) · ∇ϕ̂i(x) dx.

In one dimension, with Ω = (a, b), we have

Sij =

∫ b

a

ε(x)ϕ′
j(x)ϕ̂′

i(x) dx.

PDE Project Course 05/06 – p. 4

The load vectorb

The load vector b is given by

bi =

∫

Ω

f(x)ϕ̂i(x) dx.

PDE Project Course 05/06 – p. 5

Example: Poisson’s equation

For Poisson’s equation, −∇ · (ε(x)∇u(x)) = f(x)
in Ω, we obtain

Sξ = b,

where S is the stiffness matrix, b is the load
vector and ξ is the vector containing the degrees
of freedom for the finite element solution U given
by

U(x) =
N

∑

j=1

ξjϕj(x).

PDE Project Course 05/06 – p. 6

The mass matrixM

The mass matrix M is given by

Mij =

∫

Ω

ϕj(x)ϕ̂i(x) dx.

PDE Project Course 05/06 – p. 7

The convection matrixB

The convection matrix B is given by

Bij =

∫

Ω

β(x) · ∇ϕj(x)ϕ̂i(x) dx.

In one dimension, with Ω = (a, b), we have

Bij =

∫ b

a

β(x)ϕ′
j(x)ϕ̂i(x) dx.

PDE Project Course 05/06 – p. 8

Example: convection–diffusion

Using matrix notation, the convection-diffusion
equation

u̇(x, t) + β(x) · ∇u(x, t) −∇ · (ε(x)∇u(x)) = f(x),

can be written in the form

Mξ̇(t) + Bξ(t) + Sξ(t) = b.

This is an ODE for the degrees of freedom ξ(t).

PDE Project Course 05/06 – p. 9

General bilinear form a(·, ·)

In general the matrix Ah, representing a bilinear
form

a(u, v) = (A(u), v),

is given by
(Ah)ij = a(ϕj, ϕ̂i).

and the vector bh representing a linear form

L(v) = (f, v),

is given by
(bh)i = L(ϕ̂i).

PDE Project Course 05/06 – p. 10

Assembling the matrices

PDE Project Course 05/06 – p. 11

Computing (Ah)ij

Note that

(Ah)ij = a(ϕj, ϕ̂i) =

∫

Ω

A(ϕj)ϕ̂i dx

=
∑

K∈T

∫

K

A(ϕj)ϕ̂i dx =
∑

K∈T

a(ϕj, ϕ̂i)K .

Iterate over all elements K and for each element
K compute the contributions to all (Ah)ij, for
which ϕj and ϕ̂i are supported within K.

PDE Project Course 05/06 – p. 12

AssemblingAh

for all elements K ∈ T

for all test functions ϕ̂i on K

for all trial functions ϕj on K

1. Compute I = a(ϕj, ϕ̂i)K

2. Add I to (Ah)ij

end

end

end

PDE Project Course 05/06 – p. 13

Assemblingb

for all elements K ∈ T

for all test functions ϕ̂i on K

1. Compute I = L(ϕ̂i)K

2. Add I to bi

end

end

PDE Project Course 05/06 – p. 14

Mapping from a
reference element

PDE Project Course 05/06 – p. 15

Isoparametric mapping

• We want to compute basis functions and
integrals on a reference element K0

• Most common mapping is isoparametric
mapping (use the basis functions also to
define the geometry):

x(X) = F (X) =
n

∑

i=1

φi(X)xi

• Linear basis functions ⇒ Affine mapping:
x(X) = F (X) = BX + b

PDE Project Course 05/06 – p. 16

Piola mapping

• Piola mapping:

x(X) = P (X) =
1

detF ′
F ′(ψ ◦ F−1)

• Affine mapping: F (X) ⇒ F ′ constant (B)

PDE Project Course 05/06 – p. 17

The mappingF : K0 → K

X1 = (0, 0) X2 = (1, 0)

X3 = (0, 1)

X

x = F (X)

F (X) = x1ϕ0
1(X) + x2ϕ0

2(X) + x3ϕ0
3(X)

F

x1

x2

x3

K0

K

PDE Project Course 05/06 – p. 18

Some basic calculus

Let v = v(x) be a function defined on a domain Ω
and let

F : Ω0 → Ω

be a (differentiable) mapping from a domain Ω0

to Ω. We then have x = F (X) and
∫

Ω

v(x) dx =

∫

Ω0

v(F (X)) | det ∂Fi/∂Xj| dX

=

∫

Ω0

v(F (X)) | det ∂x/∂X| dX.

PDE Project Course 05/06 – p. 19

Affine mapping

When the mapping is affine, the determinant is
constant:

∫

K

ϕj(x)ϕ̂i(x) dx

=

∫

K0

ϕj(F (X))ϕ̂i(F (X)) | det ∂x/∂X| dX

= | det ∂x/∂X|

∫

K0

ϕ0

j(X)ϕ̂0

i (X) dX

PDE Project Course 05/06 – p. 20

Transformation of derivatives

To compute derivatives, we use the
transformation

∇X =

(

∂x

∂X

)>

∇x,

or

∇x =

(

∂x

∂X

)−>

∇X .

PDE Project Course 05/06 – p. 21

The stiffness matrix

For the computation of the stiffness matrix, this
means that we have

∫

K

ε(x)∇ϕj(x) · ∇ϕ̂i(x) dx

=

∫

K0

ε0(X)
[

(∂x/∂X)−> ∇Xϕ0

j(X)
]

·
[

(∂x/∂X)−> ∇Xϕ̂0

i (X)
]

· · ·

· · · | det (∂x/∂X) | dX.

Note that we have used the short notation

∇ = ∇x.
PDE Project Course 05/06 – p. 22

Computing integrals onK0

• The integrals on K0 can be computed exactly
or by quadrature.

• In some cases quadrature is the only option.

Standard form:
∫

K0

v(X) dX ≈ |K0|

n
∑

i=1

wiv(X i)

where {wi}
n
i=1

are quadrature weights and
{X i}n

i=1
are quadrature points in K0.

PDE Project Course 05/06 – p. 23

Solving nonlinear problems

PDE Project Course 05/06 – p. 24

Nonlinear problems

If the problem is nonlinear, for example,

−∇ · (|∇u| ∇u) = f,

we rewrite the problem as

−∇ · (|∇ũ| ∇u) = f.

As before, we obtain a linear system Ahξ = b, but
now

Ah = Ah(ũ) = Ah(u) = Ah(ξ),

i.e. Ah(ξ)ξ = f .

PDE Project Course 05/06 – p. 25

Fixed-point iteration

To solve a nonlinear problem F (ξ) = 0, we
rewrite the problem in fixed-point form

ξ = g(ξ),

and apply fixed-point iteration as follows:

ξ0 = a clever guess

ξ1 = g(ξ0)

ξ2 = g(ξ1)

. . .

PDE Project Course 05/06 – p. 26

Fixed-point iteration

According to the contraction-mapping theorem,
fixed-point iteration converges if

Lg < 1,

where Lg is a Lipschitz-constant of g:

‖g(ξ) − g(η)‖ ≤ Lg‖ξ − η‖.

PDE Project Course 05/06 – p. 27

Basic algorithm

ξ = ξ0

d = 2 · tol

while d > tol

ξnew = g(ξ)

d = ‖ξnew − ξ‖

ξ = ξnew

end

PDE Project Course 05/06 – p. 28

Newton’s method

Newton’s method is a special type of fixed-point
iteration for F (ξ) = 0, where we take

g(ξ) = ξ − (∂F/∂ξ)−1 F (ξ).

Usually converges faster than basic fixed-point
iteration, but requires more work to implement.

PDE Project Course 05/06 – p. 29

Time-stepping

PDE Project Course 05/06 – p. 30

A shortcut

Replace ξ̇ by (ξ(tn) − ξ(tn−1))/kn, and replace ξ
by

• ξ(tn−1): forward / explicit Euler

• ξ(tn): backward / implicit Euler

• (ξ(tn−1) + ξ(tn))/2: Crank-Nicolson / cG(1)

PDE Project Course 05/06 – p. 31

Example: backward Euler

Discretizing the heat equation u̇ − ∆u = f in
space, we have

Mξ̇ + Sξ = b.

Using the implicit Euler method for time-stepping,
we obtain

M(ξ(tn) − ξ(tn−1))/kn + Sξ(tn) = b(tn),

or

(M + knS)ξ(tn) = Mξ(tn−1) + knb(tn).

PDE Project Course 05/06 – p. 32

Basic algorithm

t0 = 0

n = 1

while t < T

tn = tn−1 + k

ξn = . . .

n = n + 1

end

PDE Project Course 05/06 – p. 33

General solution strategy

We only allow PDEs in the form:

u̇ = f(u).

Mξ̇ + Sξ = b ⇒ ξ̇ = f(ξ) = M−1(b − Sξ)

Then we can give this f to a general ODE solver
which can do time adaptivity, fixed-point iteration
and Newton’s method where necessary.

PDE Project Course 05/06 – p. 34

	Lecture plan
	The stiffness matrix S
	The load vector b
	Example: Poisson's equation
	The mass matrix M
	The convection matrix B
	Example: convection--diffusion
	General bilinear form $a(cdot , cdot)$
	Computing $(A_h)_{ij}$
	Assembling A_h
	Assembling b
	Isoparametric mapping
	Piola mapping
	The mapping $F : K_0 ightarrow K$
	Some basic calculus
	Aff{i}ne mapping
	Transformation of derivatives
	The stiffness matrix
	Computing integrals on K_0
	Nonlinear problems
	Fixed-point iteration
	Fixed-point iteration
	Basic algorithm
	Newton's method
	A shortcut
	Example: backward Euler
	Basic algorithm
	General solution strategy

