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94 Taylor’s formula

The following is taken from AMBS Ch 28.15 and Problem 28.11.

Theorem 94.1. (Taylor’s formula) Suppose that f has Lipschitz continuous derivative of order
n + 1 on the interval [a, b] and let x̄ ∈ (a, b). Then f satisfies Taylor’s formula of order n at x̄:

f(x) = f(x̄) + f ′(x̄)(x− x̄) + f ′′(x̄)
(x− x̄)2

2
+ f ′′′(x̄)

(x− x̄)3

3!

+ · · ·+ f (n)(x̄)
(x− x̄)n

n!
+ Rn(x, x̄)

=
n∑

k=0

f (k)(x̄)
(x− x̄)k

k!
+ Rn(x), for all x ∈ [a, b],

where the remainder Rn is given by

Rn(x) =
∫ x

x̄

(x− y)n

n!
f (n+1)(y) dy(94.1)

= f (n+1)(x̂)
(x− x̄)n+1

(n + 1)!
,(94.2)

and x̂ is an unknown number between x and x̄.

The polynomial

Pn(x) =
n∑

k=0

f (k)(x̄)
(x− x̄)k

k!

is called the Taylor polynomial of f of degree n at x̄. Remember that n factorial (“n fakultet”)
means

n! = 1 · 2 · 3 · · ·n, 0! = 1.

The Taylor formula expresses the function as a sum of two terms:

f(x) = Pn(x) + Rn(x),

where the polynomial is simple to compute with, and where the remainder has a more complicated,
perhaps unknown, dependence on x. Note that both the Taylor polynomial and the remainder
also depend on x̄ but we always consider x̄ as a fixed number. Therefore we write Rn(x) instead
of Rn(x, x̄).

The main importance of the formula is that it gives a formula for the remainder, which shows
that the remainder is smaller than the terms in the polynomial, when x is close to x̄. For example,
if we know that

|f (n+1)(x)| ≤ M, for all x ∈ [a, b],

then, by (94.2),

|Rn(x)| = |f (n+1)(x̂)| |x− x̄|n+1

(n + 1)!
≤ M

|x− x̄|n+1

(n + 1)!
.(94.3)

This means that we can often compute with the Taylor polynomial, which is simple to do, and
then draw conclusions about f . This also means that we can write

f(x) = Pn(x) + Bn(x)(x− x̄)n+1(94.4)

where the function Bn is bounded near x̄:

|Bn(x)| = |f (n+1)(x̂)| 1
(n + 1)!

≤ M

(n + 1)!
.
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This form of Taylor’s formula makes it easy compute limits as x → x̄, see Problem 94.3.
Note the two forms of the remainder, (94.1) and (94.2). The second one is often easier to use.

Note also that we need not know x̂, it is usually sufficient to have a rough estimate of f (n+1)(x̂)
as in (94.3).

Proof. We begin by recalling from the Fundamental Theorem of Calculus:

f(x) = f(x̄) +
∫ x

x̄

f ′(y) dy

Note that this is Taylor’s formula of order 0: P0(x) = f(x̄) is Taylor’s polynomial of degree 0 with
remainder R0(x) =

∫ x

x̄
f ′(y) dy. To obtain Taylor’s formula of order 1 we integrate by parts:

f(x) = f(x̄) +
∫ x

x̄

1 · f ′(y) dy

= f(x̄) +
∫ x

x̄

d

dy
(y − x)f ′(y) dy

= f(x̄) +
[
(y − x)f ′(y)

]x

x̄
−

∫ x

x̄

(y − x)f ′′(y) dy

= f(x̄) + f ′(x̄)(x− x̄)︸ ︷︷ ︸
=P1(x)

+
∫ x

x̄

(x− y)f ′′(y) dy︸ ︷︷ ︸
=R1(x)

.

Note that this is the same as our definition of the derivative:

f(x) = f(x̄) + f ′(x̄)(x− x̄) + Ef (x, x̄).

We continue and integrate by parts once more using (x− y) = − d
dy

(x−y)2

2 :

f(x) = f(x̄) + f ′(x̄)(x− x̄)−
∫ x

x̄

d

dy

(x− y)2

2
f ′′(y) dy

= f(x̄) + f ′(x̄)(x− x̄)−
[ (x− y)2

2
f ′′(y)

]x

x̄
+

∫ x

x̄

(x− y)2

2
f ′′′(y) dy

= f(x̄) + f ′(x̄)(x− x̄) + f ′′(x̄)
(x− x̄)2

2
+

∫ x

x̄

(x− y)2

2
f ′′′(y) dy

= P2(x) + R2(x).

Repeating this once more we get:

f(x) = f(x̄) + f ′(x̄)(x− x̄) + f ′′(x̄)
(x− x̄)2

2
+ f ′′′(x̄)

(x− x̄)3

2 · 3
+

∫ x

x̄

(x− y)3

2 · 3
f (4)(y) dy

= P3(x) + R3(x).

After n steps of this procedure we have:

f(x) = f(x̄) + f ′(x̄)(x− x̄) + f ′′(x̄)
(x− x̄)2

2
+ f ′′′(x̄)

(x− x̄)3

3!
+ · · ·+ f (n)(x̄)

(x− x̄)n

n!

+
∫ x

x̄

(x− y)n

n!
f (n+1)(y) dy = Pn(x) + Rn(x).

This is Taylor’s formula of order n with remainder in the form (94.1).
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In order to obtain the alternative form (94.2) we first make a transformation of variable:

Rn(x) =
∫ x

x̄

(x− y)n

n!
f (n+1)(y) dy =



z =
(x− y)n+1

(n + 1)!

dz = − (x− y)n

n!
dy

y = x̄ =⇒ z = z̄ =
(x− x̄)n+1

(n + 1)!
y = x =⇒ z = 0


=

∫ z̄

0

f (n+1)(y(z)) dz,

and then use the mean value theorem for integrals, which says that there is an unknown number
ẑ between 0 and z̄ such that

Rn(x) =
∫ z̄

0

f (n+1)(y(z)) dz = f (n+1)(y(ẑ))
∫ z̄

0

dz = f (n+1)(y(ẑ))z̄ = f (n+1)(x̂))
(x− x̄)n+1

(n + 1)!

where x̂ = y(ẑ), that is, ẑ = (x−x̂)n+1

(n+1)! .

Problems

94.1. Write down Taylor’s formula of order n at x̄ = 0 for the following functions:

(a) log(1 + x)

(b) exp(x)

(c) sin(x)

(d) cos(x)

94.2. Use Taylor’s formula of order 2 (or 3 or 4) to compute approximations of the following.
Estimate the error.

(a) log(1.1)

(b) exp(−0.1)

(c) sin(0.1)

(d) cos(0.1)

94.3. Compute the following limits.

(a) lim
x→0

sin(x)
x

(b) lim
x→0

1− cos(x)
x2

(c) lim
x→0

ex − 1− sin(x)
log(1 + x)− x

(d) lim
x→0

log(1 + x2)− x2

x4



4

Answers and solutions

94.1.

(a)

f(x) = log(1 + x) f(0) = 0

f ′(x) =
1

1 + x
f ′(0) = 1

f ′′(x) =
−1

(1 + x)2
f ′′(0) = −1

f ′′′(x) =
(−1)(−2)
(1 + x)3

=
(−1)22!
(1 + x)3

f ′′′(0) = 2 = (−1)22!

f ′′′′(x) =
(−1)(−2)(−3)

(1 + x)4
=

(−1)33!
(1 + x)4

f ′′′′(0) = −6 = (−1)33!

...
...

f (k)(x) =
(−1)k−1(k − 1)!

(1 + x)k
f (k)(0) = (−1)k−1(k − 1)!

log(1 + x) = 0 + x + (−1)
x2

2!
+ (−1)22!

x3

3!
+ (−1)33!

x4

4!
+ · · ·+ (−1)n−1(n− 1)!

xn

n!
+ Rn(x, 0)

= x− x2

2
+

x3

3
− x4

4
+ · · ·+ (−1)n−1 xn

n
+ Rn(x, 0)

=
n∑

k=0

(−1)k−1 xk

k
+ Rn(x, 0)

Rn(x, 0) =
(−1)nn!

(1 + x̂)n+1

xn+1

(n + 1)!
=

(−1)n

(1 + x̂)n+1

xn+1

n + 1
, where x̂ is between x and 0.

(b)

exp(x) = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · ·+ xn

n!
+ Rn(x, 0)

Rn(x, 0) = ex̂ xn+1

(n + 1)!
, where x̂ is between x and 0

(c)

f(x) = sin(x) (k = 0, m = 1) f(0) = 0
f ′(x) = cos(x) (k = 1, m = 1) f ′(0) = 1
f ′′(x) = − sin(x) (k = 2, m = 2) f ′′(0) = 0
f ′′′(x) = − cos(x) (k = 3, m = 2) f ′′′(0) = −1
f ′′′′(x) = sin(x) (k = 4, m = 3) f ′′′′(0) = 0

f (5)(x) = cos(x) (k = 5, m = 3) f (5)(0) = 1
...

...
...

f (2m−2)(x) = (−1)m−1 sin(x) (k = 2m− 2 even) f (2m−2)(0) = 0

f (2m−1)(x) = (−1)m−1 cos(x) (k = 2m− 1 odd) f (2m−1)(0) = (−1)m−1



5

sin(x) = x− x3

3!
+

x5

5!
− x7

7!
+ · · ·+ (−1)n−1 x2n−1

(2n− 1)!
+ R2n(x, 0)

R2n(x, 0) = (−1)n cos(x̂)
x2n+1

(2n + 1)!
, where x̂ is between x and 0

(d)

cos(x) = 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·+ (−1)n x2n

(2n)!
+ R2n+1(x, 0)

R2n+1(x, 0) = (−1)n+1 cos(x̂)
x2n+2

(2n + 2)!
, where x̂ is between x and 0

94.2.

(a) Taylor of order 2:

log(1 + x) = x− x2

2
+ R2(x, 0)

R2(x, 0) =
1

(1 + x̂)3
x3

3

log(1.1) = log(1 + 0.1) ≈ 0.1− (0.1)2

2
= 0.1− 0.005 = 0.095

|R2(0.1, 0)| =
∣∣∣ 1
(1 + x̂)3

(0.1)3

3

∣∣∣ =
1

(1 + x̂)3
(0.1)3

3
≤ 1

3
· 10−3

because x̂ ∈ [0, 0.1] implies 1 + x̂ ≥ 1, so that 1
(1+x̂)3 ≤ 1. Thus, log(1.1) ≈ 0.095 with 3

correct decimals.

(b) Taylor of order 2:

exp(x) = 1 + x +
x2

2
+ R2(x, 0)

R2(x, 0) = ex̂ x3

3!

exp(−0.1) ≈ 1 + (−0.1) +
(−0.1)2

2
= 0.905

|R2(−0.1, 0)| =
∣∣∣ex̂ (−0.1)3

3!

∣∣∣ =
1
6
ex̂10−3 ≤ 1

6
· 10−3

because x̂ ∈ [−0.1, 0] implies ex̂ ≤ 1. Thus, exp(−0.1) ≈ 0.905 with 3 correct decimals.

(c) Taylor of order 4:

sin(x) = x− x3

6
+ R4(x, 0)

R4(x, 0) = (−1)2 cos(x̂)
x5

5!

sin(0.1) ≈ 0.1− (0.1)3

6
≈ 0.099833333

|R4(0.1, 0)| =
∣∣∣(−1)2 cos(x̂)

(0.1)5

5!

∣∣∣ = | cos(x̂)| 1
120

10−5 ≤ 1
120

· 10−5 < 10−7

because | cos(x̂)| ≤ 1. Thus, sin(0.1) ≈ 0.099833 with 6 correct decimals.

(d) ...
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94.3.

(a) By using (94.4) and Problem 94.1(c) we get

lim
x→0

sin(x)
x

= lim
x→0

x + B3(x)x3

x
= lim

x→0
(1 + B3(x)x2) = 1

Note that B3(x) = − cos(x̂)/3 is bounded near x = 0 because |B3(x)| ≤ 1/3.

(b) 1

(c) -1

(d) -1/2
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