Set theory (Mängdlära)

Some symbols	
$A = \{a, b, c\}$	A is a set (mängd) containing elements (element) a, b and c
$x \in \{a, b, c\}$	x belongs to (tillhör) the set $\{a, b, c\}$, i.e. $x = a$ or $x = b$ or $x = c$.
$x \notin A$	x does not belong to A .
$A \cap B$	Intersection (snitt). $x \in A \cap B$ if $x \in A$ and $x \in B$.
$A \cup B$	Union (union). $x \in A \cup B$ if $x \in A$ or $x \in B$.
$A \setminus B$	Minus. $x \in A \setminus B$ if $x \in A$ and $x \notin B$.
A^c or A'	Complement (komplement). A^c contains all elements that are not
	in A . (This assumes that the set of all possible elements is known
	- it is sometimes called the universe).
4 – D	
$A \subset B$	A is a subset (delmängd) of B, i.e. if $x \in A$ then $x \in B$.
$A \supset B$	A contains B, A is a superset of B , i.e. $B \subset A$.

Some special sets

Some speerer se	5-2
Ø	The empty set (tomma mängden). The set that contains no ele-
	ments.
\mathbb{N}	The set of all natural numbers (naturliga tal): 1,2,3,
\mathbb{Z}	The set of all whole numbers (heltal): \ldots , -2, -1, 0, 1, 2, \ldots
Q	The set of all rational numbers (rationella tal): $\frac{2}{3}$, 2, $-\frac{5}{12}$,
\mathbb{R}	The set of all real numbers (reella tal): $-\sqrt{2}, \frac{4}{5}, \pi, \ldots$
\mathbb{C}	The set of all complex numbers (komplexa tal): $(a + bi)$, $a, b \in \mathbb{R}$
\mathbb{R}^+	The set of all positive real numbers.
(a,b)	Open interval. The set of all real numbers x such that $x > a$ and $x < b$. This can be written in set language as $\{x \in \mathbb{R} \mid a < x < b\}$.
[a,b]	Closed interval. $\{x \in \mathbb{R} \mid a \leq x \leq b\}$
[a,b)	$\{x \in \mathbb{R} \mid a \le x < b\}$
$[a,\infty)$	$\{x \in \mathbb{R} \mid x \ge a\}$
$(-\infty, a)$	$\{x \in \mathbb{R} \mid x < a\}$

In the notation $\{x \in \mathbb{R} \mid x \geq a\}$, the left part specifies the universe, i.e. the set from which x may be taken. The "|" reads "such that" and the right part specifies which x that belong to this particular set.

©2002 Tobias Gebäck

Some Examples

— check that you understand what they mean (the statements are all true).

 $\{a, b, c\} \cap \{a, b\} = \{a, b\}$ $\{a, b\} \cup \{b, c\} = \{a, b, c\}$ $\{a,b\} \cap \{c,d\} = \emptyset$ $\{a, b, c\} \setminus \{c\} = \{a, b\}$ $A = \{x \in \mathbb{R} \mid x > 2\} \Rightarrow A^c = \{x \in \mathbb{R} \mid x \le 2\} \quad (\Rightarrow \text{ means "implies" (medför)})$ $\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$ $(-\infty,\infty) = \mathbb{R}$ $\mathbb{R}^+ = (0, \infty)$ $A \subset A \cup B$ $A \cap B \subset B$ $\{n \in \mathbb{Z} \mid n \ge 1\} = \mathbb{N} = \mathbb{Z}^+$ $\{n \in \mathbb{Z} \mid n = 2k, k \in \mathbb{N}\} = \{2, 4, 6, \ldots\}$ $\{x \in \mathbb{R} \mid x^2 = 2\} = \{\sqrt{2}, -\sqrt{2}\}$ $\mathbb{Q} = \{ (p,q) \mid p, q \in \mathbb{Z}, q \neq 0 \}$ $R_f = \{f(x) \mid x \in D_f\}$ $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$ $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$ $(A \cup B)^c = A^c \cap B^c$ $(A \cap B)^c = A^c \cup B^c$ $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$ $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$ $A^c = \{x \in U \mid x \notin A\}$ (U is the universe)

 $[a,b)^c = (-\infty,a) \cup [b,\infty)$