Answers to the Problems in EM-2000

October 31, 2000

For errors in the answers or statements of the problems, please send email to
Mats Larson: mgl@math.chalmers.se. Updated versions of this document will
be available on: http://www.md.chalmers.se/Centres/Phi/Education/KfKb/
Kurser/AnalysA/.

Chapter 3
32 172 =10
35 22 =3
3.6 170z = 45(12 — z)

3.8 x = 23/33,y = —5/33 (corresponding to selling some ice cream to get
more money to spend on soup!)

Chapter 5

5.1 1) My age, 2) Number of my children, 3) Number of contries that I have
seen, 4) Number of languages that I speak, 5) Number of Vivaldi music
CD that T own

5.5 In m xn = 0 if and only if m = 0 or n = 0, or means either, or i.e. either
m=0orn=0.
58 (a) 102=5x 18+ 12
(b) —4301 = —69 x 63 + 46
(c) 650912 = 2106 x 309 + 158
(a) 40 = 23 x 5 = {1,2,4,8,10,20,40}|40
(b) 80 =2*x 5= {1,2,4,8,10,16,20,40,80}|80

5.9

5.10 For what or means, see 5.5.

Ifin pxm =pxn, p=0, then m and n could be any nonzero ( because
0 x 0 is NOT defined) integer number, (for example m = 17,n = —1).



5.12 (a+b)? = a? + b? is not valid. Simply take a = b = 1, then the left hand
side is 4 while the right hand side is 2.
ac < bc implies a < b is an invalid implication. Just take a =2,b=1,¢ =
—1, then we are getting: —2 < —1 implies 2 < 1, i.e., we derive from a
correct statement a wrong conclusion.
Finally a + bc = (a + b)c. Take, for example, a = b =1 and ¢ = 0, you get
1=0.
513 (a) —2<x<20
(b) 8<z <20
() —13<z <25
d 1<z<3
Chapter 6
6.1 (a) The inductive step: 12 +22+ 32+ ... + (n — 1)? + n? = (the in-
ductive assumption) = MWD 4 2 — 20% Sn7indbn’ _
n(n+1)(2n+1)
6
(b) The inductive step: 13 +23+3%+ ... 4+ (n—1)3+n? = (the inductive
assumption) = (5012 4 p3 = "4—2"31"2“"3 = (nintl)y2
6.2 Note: error in the problem statement 1/(n + 1) should be n/(n +1). The
: : L1 1 1 1 1 . .
inductive step: 55+ 53+ 5+ - + ;oom T A = (the inductive
: _ _n-—1 1 _ (n=1)(n+1)+1 __
assumption) = -+ T antD) = o nzsﬁﬂ)) = wtT
6.3 (a) The inductive step: 3n? = 3((n—1)+1)2 =3(n—1)2+6n—3 > (the
inductive assumption) > 2(n—1)+1+6n—3 = 2n+(6n—4) > 2n+1
(b) The inductive step: 4™ = 4 x 4"~ > (the inductive assumption) >
4n—1)2=n2+(3n%2—8n+4) =n%2+3(n—2)2+4(n—2) > n? (for
n > 2)
6.4 Let P, denote the size of the population year n. The modeling assumption
is that P, = K P2_,, which iterated n times gives P, = K2 ~1P3".
6.5 Let P,, denote the size of the population year n. The modeling assumption
is that Pn = KIPn—l — KQPH271.
6.6 Let P, denote the size of the population year n. The modeling assumption
is that P, = KP,_1 + KP,_».
6.7 —



p'ﬂ

. . . .. p—1][p"*t -1
6.8 The inductive step: Since, by long division, — o )
p" -1
we get pnptl; L —pn 4 ’;:%11 = (the inductive assumption) = p" + p"~1 +
.o+ 1
Chapter 7

7.3 Proof of Commutative law for addition:
(p, @) +(r,s) = (ps,qs)+(qr,qs) = (ps+qr,qs) = (rq+sp, sq) = (rq, sq) +
(sp,sq) = (r,8) + (p,q)
Proof of Commutative law for multiplication:
(p,q) x (r,s) = (pr,qs) = (rp,sq) = (r,8) x (P, q)
Proof of Distributive law:
(p, @) x ((r,8) + (t,u)) = (p,q) X (ru+ st, su) = (p(ru + st),qsu) = pru +
pst,qsu) = (pru,qsu) + (pst,qsu) = (pr,qs) + (pt,qu) = (p,q) x (r,s) +
(p,q) x (t,u)

7.4 For rational numbers r = I, s = 2 and ¢ = {*, one has

S1 t1

r r1 Sita + sat 7181ty + r182t
r(s+t) = — ( y= L st st Tisits ¥ isoly
ry Szt T2 Sato T989ts

r181ts  risaty 1181 rity

= = =rs+rt
To82ty  TaSata TSy rala

75 (a) {z€Q:1<z<5/3}
b) {z€Q: - <z<3}
() {z€Q:z<—-}4orz>$

d) {z€eQ:x<—forz>3}

7.6 Using the fact that one mile is 5280 feet, and one hour 3600 seconds, the
speed of the runner is 16 miles/hour plus 8.8 feet/second, that is 16 x
5280/3600 + 8.8 = 162280 | 8.8.3500 _ 84480431680 — LI6L80 feet /second,
that is 32.26666.. feet/second.

7.7 (a) 0.42857142857142..
(b) 0.153846 153846 15..
(¢) 0.2041176470588235 29411..

)

)
7.8 (a) 3.456
(b) 0.5975
(a)

7.9 (a) 42/99, that is 14/13



(b) 8811/9999
(c) 42905/99999

7.10 (a) Skippas!

Figure 1:
(c) Skippas!
(d) Skippas!
7.11
7.12 Co(1 + 0.09)"

Chapter 9

9.1

9.2 (a) (=10,14]
(b) (10, 00)
(c) (—14.8,25.2]

9.3 (—o0,0) U 55,

9.4 domain: {0,1,2,3,4,5,6,7,8,9},
range: {75,75.01,75.08,75.27,75.64,76.25, ..,82.29}

9.5 Dy = [0,50], R = [0,/50]

9.6 {1,7,5, %5}

9.7 Dy = Q = (—00,00). B could be any set containing Ry = (0, 1]

98 (a) {z€Q:2# —2and x #4 and z # 5}
(b) {re@:z#—2and x #2}
() {z€Q:z# —1/2 and = # 8}

9.9 {0,1,2,3,4}

9.10 Skippas!

9.11 (a) (b), (c) skippas!

9.12 Skippas!

9.13 Skippas!

9.14 Skippas!

9.15 Skippas!
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2
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Figure 2:
Chapter 10
101 (a) y=4z—1
(b) y—2=—3(z+4)
() y—7=0
(d) y=—-"74z+27
(¢) z=-3
(f) y=-3z+5
102 (a) y=32z—-%
(b) y=—-32+3
(c) =13
(d) y=4
(e) y=10x + 7
) y=-2¢-1
103 z=—21

10.4 See the plot of the functions below.
10.5 Yes!

10.6 Yes!

10.7 (a) (—4/7,2/7)



Figure 3: A plot of the functions y = 3z (_),y =32 -2 (...), y =1z +4 (_)

andy =1z +1 (___). (Problem 10.4)

(b) (35/11,223/11)
108 y = —f(z —3)

109 (a) y=0.1z+1.9
(b) y = —10z + 12

10.10 z1 < o2 < 0 implies 23 — 27 = (2 +21)(z2 —71) < 0, because T2 + 71 < 0
and Ty — z; > 0, that is 23 < z7.

10.11 See the plots of the functions below.

10.12 See the plots of the functions below.
10.13 See the plots of the functions below.
10.14 See plot below.
10.15 See plot below
(a) y=2?4+4z+5=(z+2)2+1
(b) y=222-22— 3 =2(z—3)* -1
() y=-122+22—1=—-1(z—3)2 +2
10.16 (a) Y7 02
(b) Yii (=1~



Figure 4: Plot of the functions a) y = 622, b) y = %22, and ¢) y = 322
(Problem 10.11)

D=
+
s
I
-
<)
Fl=
C“

10.17

=)

48 — 72z + 62* — 872° + 122°

—2 4+ 62 + 222 + 62% — 2* + 42°

—8z2 + 1623 — 62* — 22° + 1725 + 2828

—8 + 12z + 1423 + 42" — 62° — 727

42 — 223 + 82° — 228 + 27 — 42°

—8 4 12z — 222 + 1523 + 4z* — 102° — 727

—8 4+ 122 + 42 + 122° + 42* + 225 — 22° — 627 — 42°

)
)
)
)
)
)
)
)
10.18 (a) —4+ 6z — 822 + 112 — 162°
)
)
)
)
)
)
)
) —1622+322% —122* — 42° + 4225 — 1627 + 6228 4 22° — 17210 — 28212



-3 ) =i 0 1 2 3

Figure 5: Plots of the functions a) y = (z —2)%, b) y = (z + 1.5)?, and ¢)y =
(z 4+ 0.5)2. (Problem 10.12a)

10.19

8 11 3 i+7
10.20 p1p2 = 3 2im0 2 j=0 711 ot

10.21 The polynomial p(z) = 360z — 94222+ 9493 — 48021 +1302° — 1825 + 27 is
zero for 0,1,2,3,4,5, and has the property that p(z) — +oo when  — 400
and p(z) - —oo when z — —oo, see plots below.The polynomial can be
factored into p(z) = z(z — 1)(z — 2)(z — 3)*(z — 4)(x — 5), which explains
the behavior.

10.22 (a) Has increasing/decreasing been defined in the book? A function f is
increasing in an interval (a,bd) if a < z <y < b implies f(z) < f(y).
From 2° — 3 = L(z — y)(z? + y* + (z + y)?) it is seen that z° — y*

has the same sign as & — y, hence ® is increasing.
(b) A function f is decreasing in an interval (a,b) if a < z <y < b
implies f(x) > f(y). From z* —y* = (z — y)(z + y) (2% + 9?) it is

>
seen that z* < y?if 0 <z <y,and z* > y*if z <y < 0.

10.23 Reformulation of problem: Plot the monomials for —2 < z < 2. See the
plot below.



12

Figure 6: Plots of the functions a) y = 22—3,b) y = 22+2, and ¢) y = 22 —0.5.
(Problem 10.13a)

10.24 Reformulation of problem: Plot the polynomials for in the intervals z* —
2, z* 4+ 2], where z* are the symmetry or anti-symmetry point of the poly-
nomial. The point z* is symmetry point if for any z, p(z*+z) = p(z* —z),
correspondingly x* is antisymmetry point if p(z* + z) = —p(a* — ). See
the plots in figure below.

10.25 See plots below of piecewise polynomials.

Chapter 11

{reR:z#%and 2z #1}
(b) {zr€R:z#0andz #2and z # —3

)
)
() {z€eR:z#0}
(d {zx€R:z#0andz # -2
(e) {z€ R:x# % and z # —4}
) {reR:z# —2and z # -1}
112 (a) 302 (i + 1)zi(x — 1) (Note misprint: 100 should be 102!)
() Tidi 5
11.3 (a) Note misprint: f(z) = ax+b should be f(z) = azx. Proof: f(z+y) =

a(z +y) = ax +ab = f(z) + f(y)-



Figure 7: Plots of the functions a) —1(z — 1) + 2, b) 2(z +2)? — 5 and ¢)
$(x —3)> — 1 for =3 < z < 3. Note the z- and y-coordinates of the extreme

points, (the points where the function has max or min value). (Problem 10.14)

(b) Proof: g(z+y) = (z+y)* = 2° +2zy +y” and g(z) +g(y) = 2” +¢°,
that is g(z + y) # g(x) + g(y) unless z =0 or y = 0.

114 (a) £H22-8 — 54 3
222 —Tx—4 __
(b) =gi— =2 —4
(c) 7”2:&;’1 =4r—-22+ 3%
(d) z3+3§i-;3z+2 =22 4z+1
52%+622-4 _ 5 a2
(e) e razti = 2% — 2+ i
() it =a” — 0 -4
8 2
(8) ;3:1 =25 +2% + ;3:1
(h) &=L =gt 24 . 224z = St
115 (a) 3(22%+1) —5=62" —2
(b) 2(4)*+1=3 +1
4
©) 5
(d) 32(4)2+1)-5=3(%+1)-5=2% -

11.6 Note misprint: z/z? should be 1/z. fi o fo = 4(1)+2 =2 +2 and
foofi = 4;? are not equal, for example for z = 1.

10
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Figure 8: Plots of the functions a) (z+2)*+1,b) 2(z—3)*—1and ¢) —3(z —
3)2 +2 for —3 < z < 3. (Problem 10.15)

11.7 fiofe = a(cx+d)+b= acx+ad+band frofi = c(ax+b)+d = cax+cb+d
are equal if and only if ad + b = ¢b + d, which is the case for example if

a=1and ¢ =1, for any b and d, or otherwise if d = Zb_’lb orb= %.
118 (a) {z€R:z#0andz # 1}

(b) {zeR:z#1andz #z =1 and z = 3}
Chapter 12
12.1 Since |f(z1) — f(z2)| = |#? — 23| = |21 + 22]|21 — 72|, We have |f(z1) —

f(z2)] < 16|z1 —22| for z1,22 € [—8,8], and |f(z1) — f(z2)| < 800|z1 — 22|
for z1,x2 € [—400,200].

12.2 For a,b € [10,13] one has |f(a) — f(b)| = |a® — b%| = |(a + b)(a — )| =
la + bl|a — b| < 26|a — b|

12.3 For a,b € [-2,2] one has |f(a) — f(b)| = |4a — 2a® — (4b — 2b%)| = |4(a —
b)—2(a+b)(a—b)| = |(4—2a—2b)(a—b)| = |[4—2a—2b|la—b| < 12|a—1b|,
because |4 — 2a — 2b| < 4+ 2|a| +2|b| <4+ 4+ 4 =12, for a,b € [-2,2].

12.4 Since |f(z1) — f(z2)| = |2} — 23| = |71 — 22|22 + 2122 + 23| < 4+ 4+
4)|z1 — 22|, we have L = 12.

12.5 Show that for all 1, z2, we have ||z1| — |22|| < |z1 — 22|- Thus |f(z1) —
f(@2)| = ||lz1]| — |22|| £ |21 — 22| and L = 1.

11
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Figure 9: Three plots of the polynomial 360z — 9422 4 94923 — 4802 + 130x° —
182% + 27, the top figure shows with matlab notation z = —0.1 : 0.001 : 5.1,
the middle z = —2 : 0.001 : 7, and bottom = = —1 : 6. The matlab notation
x=x0:dx:x1, means that x are the values starting with x0 and increasing with
interval dx until x1 is reached. (Problem 10.21)

12.6 Realize (by plotting f(z)) that, given |z — z2|, | f(z1) — f(z2)| attains its
greatest value near r; = x2 ~ £2. Take 1 = 2 and 22 = 2 — ¢, where € is
a small number. Then show that |f(z1) — f(z2)| = 32|21 — 22|

12.7 For a,b € [1,2] one has |f(a) = f(b)] = | & — | = |Exg | = |&Fe=a)| =

%M — b| < 4|a — b|, because |a + b| < 4 and a?b? > 1.

then show the Lipschitz continuity with L = 4. It is, however, possible to
do better and get L = 3v/3/8, which is the maximum value attained by

ﬁ%, at 1 = x5 = +1/4/3. See the plot of this function below.

12.8 Show that |f(z1) — f(z2)| < Tli%;r(f—ilzg_)ml — x3|. For z1,25 € [-2,2]

12.9 (a) L =100
(b) L = 10000
(¢) L = 1000000

12.10 For z # y the Lipschitz inequality may be written |f(z)— f(y)|/|x—y| < L.
Let z =1/n,y =1/2n,n=1,2,3,... and observe that |f(z) — f(y)|/|z —
y| = 2 xn?, which is greater than any L for n > /L/2.

12.11 (a) For z # y one can write the Lipschitz inequality as |f(z) — f(v)|/|z—

12
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Figure 10: Plots of a) 2%, b) z* and c) 2°. Note that z° and 2° are odd while
x* is even. (Problem 10.23)

y| < L. With z =0 and y = —1/N we have f(z) — f(y)|/|z —y| =
|0 —1]/|0 — (=1/N)| = N, which is larger than any L for N > L.

(b) Yes!

12.12 If the Lipschitz constant L is extremly large then the function is close to
discontinuous from a practical point of view.

12.13 Note misprint: fo — fo should be fi; — f» and the Lipschitz constant of ¢f;
should be [c|f1. We have |(fi(z) — fa(2)) — (f1(y) — f2(y))| < |fr(2) —
[ +1f2(2) = fo(y)| < (Li+Lo)|z—y| and [cfi(z) —cfi(y)| < |e| | fi(z)—
fiy)] < le|Llz —y].

12.14 Note first that a Lipschitz constant for f(z) = 2™ on [—c,c] is nc™ 1, see
Problem 12.14. Then using Theorem 12.1 we readily obtain the desired
result.

12.15 From 12.10 it follows that 1/z is not Lipschitz on (0,1] and thus it can
not be Lipschitz on [—11] since (0,1] C [-1,1].

12.16 Observe that 1/ f is Lipschitz mith Lipschitz constant 1/m?, since |1/ f2(z)—
1/f2(y)| < |f2(z) — f2(y)|/m?. Now the Theorem follows from Theorem
12.4.

12.17 (a) Lipschitz with L = 138 using the formula in 12.14.
(b) Lipschitz with L = 16/9.

13
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Figure 11: a) is plotted in interval [-4,0], b) is plotted in [-1,3], and c¢) in [-3,1].
(Problem 10.23)

Figure 12: To the left problem a) and to the right b). (Problem 10.25)

(¢) Not Lipschitz continuous by Theorem 12.3, because not bounded on
the given interval.

(d) Lipschitz with L = 32, use Theorem 12.6.

12.18 Follows from Theorem 12.5 because ¢z + ¢2(1 — x) > min(cy, ) > 0 for
z € [0,1].

Chapter 13

13.1
13.2
13.3 (a) {3},

14
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Figu)re 13: A plot of the function % in [-2,2] x [-2,2]. (Problem
12.8

(b) {4},

(©) {(=1)"}2

(d) {1+3i}2,

() {3i -1}

() 5732,
)

134 (a) |529 — 0| = 527 <e€if3n+1> &,

that is if n > N where N = 3¢,

13.5 [r" — 0] < e if (5)" <, that is if 27 > L.

13.6
13.7 (a) Choose any M > 0. Now we have to show that there exists an N
such
that —4n +1 < —M for all n > N. We see that this is true for
N = (M +1)/4.
(b) If lim n® = oo then surely
n—oo
lim n® + n? = oo, since n® < n? + n?
n—oo

for n > 1. So it is sufficient to, for any M > 0, find an N such that
n® > M, for n > N. This is true for N = M1/3,

15
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13.8 Correction: Should be r > 1, not |r| > 2.

For any M > 0, we want to show that there exists an N such that r” > M
for all

n>N.Butr®™ > M < ninr >1nM¢)n>1n(%)7
solet N = In(2),

(b) 3:1r =4
4
5(—2
(¢) 1—§) = %'
13.10 (a) =z
® o = o
13.11 All are equal to {%, %, %, %, ..}

except (e) which is {£,%,18 ..}

o

13.12 (a) {”51‘7155”}”__4

) {2t}

n=3

ORE =

n=2

13.13 STRYKES, triangelolikheten bor behandlas redan i kap

6, rational numbers.

The task is to prove the triangle inequality: |a + b| <
—a—+—b—foralla,b.
Ifa>0,b>0,then |[a+b =a+b=|a| + [b].
Ifa<0,6>0,a+b>0,then a+b=a+b<—a+b=|al+ b
Ifa<0,06>0,a+b<0,then|a+b=—-a—-b<—a+b=|a|+|b.
The remaining cases are proved in a similar way.
Proof of (13.7): la—b|=]a—c+c+b| <|a—c|+|c+D|.

13.14 The triangle inequality gives |(a, — b,) — (A — B)| = |(an — A) — (b, — B)| <
—an — A| + |b, — B|, where the right side can be made as small as desired
by taking n sufficiently large. Another proof can be found in
Section 13.5.

13.15 STRYKES ??

17



13.16 If n is sufficiently large, then
lan, — A| < £|A| and |b, — B| < |B], so that
|an| = lan — A+ A] < |an — Al + |4 < §|A], and
|B| = B = by + ba| < |B = bu| + o] < 5|B| + [bu, and
|bn| > 1|BJ, and ﬁ < |%‘. For large
n we thus get

B+in 4 |—

an
bnB(B—bn)+ % (an—A) ‘

< 55 |B = bl + ylan — A] <

3—A

~ TBEb. B+ hylan—AL

where the right side can be made as small as desired
by taking n sufficiently large.

Another proof can be found in Section 13.5.

13.17 (a) 1

(b) divergent to +oo, because a, = n*(4 — 6n~') > n? for
n>2

(c) 0, because |a, — 0| =n=2

(d) 1/3

(e) divergent, because a,, = 7(;13_"2 flips
(approximately) between + and —z when 7 is large

(f) 2

(g) —4 (all a,, equal —4)

(h) —5/8

(i) divergent to +o00, because

-2 -3
ap = nHEE— > 2n

18



() -1
13.18 (a) 277
(b) 7
(c) 278
(d) 1
13.19 f(ay) with f(x) and a,, given by
z2 3
(a) f(.'L') = (;2%) y Gn =T
f@) = (22)°, an = ¥
f(z) = 2, an = Zzii:
(b) f(z) =2*+2°+1, ap, =
fl@)=28+2*+1,a, =n;
fl@)=z+1,a, =n® +n*

13.20 |0.99---99,, — 1| = (0.1)* =0.00---01, <€

13.23

13.24

forn > N,if N is
the index of the first non-zero decimal in e.

Note also that, using the geometric sum,
n—1

0.99---99, =0.9)
k=0

(0.1)% = 092780 — 1 _ (0.1)".

STRYKES.

This problem has been moved to Problem 13.2.
FLYTTAS. This problem should be moved to Chapter 13.

V2 -1=v3

Chapter 14

14.2 (a) See (b).

(b) Assume ,/p = a/b where largest common divisor of a and b is 1.

Then b?p = a?, and since p is prime a = pa for some «, and thus
and thus b = pB. This is a contradiction,
since p divides both a and b. Make sure you understand all details.

2 2

b%p = p?a® or b = pa

14.3 41/3_31/4, 4 /4, etc.

14.8 Assumption give [b| =b<b—a<cand|a|=—-a=(b—a)-b<c—-b<c

19



Chapter 15

15.2 (b) Have that |zy — ziyi| = [(z — i)y +zi(y —v3)| < |(z = zi)y| + |wi(y —
yi)l = lylle — 2| + |zilly — yil < |y[27" +(J2[+0.1)27*, where we used
the fact |z;| = |(zi —2) + 2| < |zi —z| + |z| <27+ |z| < 0.1 + |7]
for ¢ > 4.

15.3 © = 0.373737... and y = /2 = 1.414213.. give z1y; = 0.3 x 1.4 = 0.42,
Toy2 = 0.37 x 1.41 = 0.5217, x3y3 = 0.373 x 1.414 = 0.527422, etc.

15.4 No, because if the limit  would be less than 1 then d = (1 — z)/2 is

positive,andH_Ll:ﬂ—jlzl—H%Zl—d=$+dforL<d that is

for i > 5 — 1, which contradict the assumption that { ==} converges to z.

i+1

15.7 (a) {r € R: —2v2 <z < 2V?2}
(b) {z€R:2<2v/2-2/30r x> 2V2+2/3}
15.9 (a) Thesequenceis {3} (ok to shift the index since we are only concerned
with the limit). For |5 — | = |’Z;§ | = ‘ﬂ;’zl < ’Z;“; =+ <e
ifi,j >N and N =

\F

15.10 Assume that i2 is a Cauchy sequence. Choose € > 0 and N, and take
j=N and i = j + 1. Compute |i? — 52| and derive a contradiction.

15.11 (b) 1/3

15.12 (b) Hint: You need to show that a Cauchy sequence is bounded. See also
15.2(b)

15.14 Let ¢ denote the smallest of all ¢:s. Choose an e > 0. Thenec—e<zx; <¢
for all i > N(€). So ¢ is the limit by the formal definition.

15.15 V2 = 1.414... gives f(1.4) = {145 = 0.4117647...., f(1.41) = il =

1.41348973..., f(1.414) = 0.4141769185..., etc. (Hmm, looks familiar, like

V2 — 1. Could it be that f(v2) = ¥Z; = V2 — 17 Checkl).

(
15.22 [2,3)
15.26 S = 0.0106020716
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15.28

15.33

15.36

R=1{1,9}

For a,b > 4 one has |f(a) — f(b)| = |[va — Vb| = |W| _

s Va+vb
—b | — _la—b Lla — bl w - _1_
\/g+\/5| = Vars S la —b] where L = 557

(a) 60=2x2%x3x%x5

(b) 6 =2x2x2x2x2x3=2%x%x3
(c) 112=24x7

(d) 129 = 3 x 43

Chapter 16

Problems

16.1

16.2

16.3

16.4

16.5

16.6

16.7
16.8
16.9

Use the Bisection Algorithm to find a solution, accurate to within 1072,
to the equation x + 0.5 + 2 cosma = 0 on the interval [0.5,1.5].

Use the Bisection Algorithm to find an approximation to /3 that is accu-
rate to within 1074

Find a bound for the number of iterations needed to approximate a solu-
tion to the equation 3 4+ x — 4 = 0 on the interval [1, 4] to an accuracy of
1073,

A trough of water of length L = 10 feet has a cross section in the shape
of a semicircle with radius » = 1 foot. When filled with water to within
a distance h of the top, the volume V = 12.4ft> of the water is given by
the formula

12.4 = 10[0.57 — arcsin b — h(1 — h?)'/?].
Determine the depth of the water to within 0.01 feet.

Suppose f(z) has only simple roots in (a,b). If f(a)f(b) < 0, show that
there are an odd number of roots of f(x) = 0 in (a,b). If f(a)f(b) > 0,
show that there are an even number (possibly zero) of roots of f(z) =0
in (a,b).

Tn41—T

Show that the Bisection method converges linearly, that is, lim, 0o 22

is constant.
Find all the roots of the function f(z) = cosz — cos 3z.
Find the root or roots of In[(1 + z)/(1 — z?)] = 0.

Find where the graphs of y = 3z and y = €® intersect by finding roots of
e¥ — 3x = 0 correct to four decimal digits.
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16.10 Consider the bisection method, determine how many steps are required to
guarantee an approximation of a root to six decimal places (rounded).

16.11 By graphical methods, locate approximations to all roots of the nonlinear
equation In(1 + z) + tan(2z) = 0.

16.12 Equation ze® — 2 = 0 has a simple root r in [0,1]. Use the bisection
method to estimate r within seven decimal digits.

16.13 Use the bisection method to find, as accurately as you can, all real roots
for each equation.

22—2z—-1=0
2

(a) 2° -
(b) 22 ="

(¢) In|z| =sinz

16.14 A certain technical problem requires solution of the equation

21.13 — ? —5.08logT =0

for a temprature T'. Technical information indicates that the temperature
should lie between 400° and 500°. Use the bisection method to estimate
the desired temperature to nearest degree.

16.15 Use the bisection method with some calculus to find the minimum value
of f(z) = sinz/z on interval [, 27].
Answers
16.1 r7 = 0.711
16.2 V3 ~ r14 = 1.7320
16.3 r1o = 1.3787
16.4 h ~ ri3 = 0.1617 so the dept isr — h ~ 1 — 0.1617 = 0.838 feet
16.7 {0, 7 /2, 7, £3n/2,£27. ...}
16.8 z =0
16.9 0.61906, 1.51213
16.10 20 steps

16.11 {0, T +¢, %Tﬂ + ¢, %’r +¢,...}, where € starts at approximatelt 1/2 and
decreases.

16.12 r = 0.8526055
16.14 475°
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Chapter 18

182 Yes L=1, §=1/3
18.3 (b), (c)

18.4 No

18.6 No

Chapter 19
19.1 Break even if sales x equals expenses 100 + 0.2z, that is if z = g(x)
where g(z) = 100 + 0.2z.
y
y=x
y=0(x)=100+0.2x

100

Figure 14: Problem 19.1

19.2 (a) For example f(z) = :”:J:zl —z=0or f(z)=2-1-2(x+2)=
23 —2>-2r—-1=0
(b) For example f(z) =2° —2*+4—z=0o0r f(z) = “”z:ﬁs -1=0.
19.3 (a) For example z = g(z) = z — 0.1(72° — 42 + 2) or z = g(x) =
(%xf) + %)1/3
(b) For example z = g(z) = 2+ 0.3(2 —2%) or z = g(z) = % or
z=g(z) = Bz + %)/4.
19.4 Skippas

19.5 (a) [0,3] (For f(z) = £ one has f(0) = —1 < 0)

(b) [-2,0] (For f(z) = 2® — 2® + 4 — x one has f(-2) = —18 < 0,
£(0) = 4> 0).

19.6
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y=9(x)
Y=g

‘ ’ ‘ '

Figure 15: Problem 19.6

functionx = fixedpoint(g,x0,max iter, tol)

iter = 0;

xold = x0;

x = x_0ld;

x_new = eval(g);

19.7 whileiter < max_iter&abs(x new — x_old) > tol

x = x_o0ld;
xnew = eval(g);
iter = iter + 1;

end

X = X_new;

19.8 Rewrite the equation z(0.02+2z)2 = 1.8 1075 as 100 2(2+2100z)? =
18, and rescale by introducing Y= 100z to obtain y(2 + 2y)% = 18.

Writing this as y = g(y) = © +2y)2, the fixed point iterations y;41 =

9(y;) does not converge. Try instead y = g(y) = (y + ﬁ)ﬂ
for which the iteration y;1 = g(y;) with yo = 2 gives the sequence

2.00000000000000

1.06944444444444

1.06010396178350

1.06020866771593

1.06020713377205

1.06020715618506

1.06020715585756

1.06020715586235

that is, z = y/100 ~ 0.010602071559.

19.9 Rewrite the equation x(0.037 + 2z)? = 1.57107° with y = 1000z as
y(37 4+ 2y)? = 1.57. Write this as y = g(y) = %22)2 and compute

yj+1 = g(y;) with yo = 1 to obtain
1.00000000000000
0.00114669453395
0.00114668034327
0.00114668034503

that is, z = /1000  0.0000011466803.

19.10 Rewrite equation 1 = (34Jf—g)2 with ¢ = Rasz = g(z) = o —
1.5(z57 — 1) and compute iterates zj41 = g(z;) with 21 = 2.
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This gives the sequence of iterates
2.00000000000000
1.27225415228543
1.09935039113477
1.02928661189918
1.00771903960222
1.00195760369188
1.00049119586678
1.00012291204137
1.00003073509157
1.00000768421569
1.00000192108160
1.00000048027213
1.00000012006814
1.00000003001704
1.00000000750426
1.00000000187607
1.00000000046902
1.00000000011725
1.00000000002931

converging to 1.

Tterating with g(z) = = + 20(% —1) and z¢ = 8 gives a sequence

of iterates
8.00000000000000
8.98369412815009
9.00182407284279
8.99979747927866
9.00002250420120
8.99999749955665
9.00000027782733
8.99999996913030
9.00000000342996
8.99999999961889
9.00000000004234

converging to 9. (Equation can also be solved analytically for R)

19.11 Rewrite the equation (2 + £3)(V — 0.011) = 3 x 15 with = V as
z = g(z) = 0.011+45/(2+50/2?) and compute iterates z; 1 = g(z;)
with z¢ = 20 to obtain
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20.00000000000000
21.32406304182749
21.33843041035536
21.33992672744253
21.34008240256070
21.34009859707175
21.34010028172915
21.34010045697786
21.34010047520834
21.34010047710479
21.34010047730207
21.34010047732259

19.12 Proof by induction: True for n = 3. Assume true for n. Then
Tnt1 = §n + %H: 10+ i 70) ++i1
1 ntl 1 1 1 ntl 1
= T, t s 17 T 1= g T lim 1
showing that formula valid for n + 1.
19.13 (a) z, = 2"xo + + >0, 2¢
(b) For any given M > 0 we have that z,, > M if n is large enough,
because Y o 2¢ = (1 —2"+1)(1 —2) =27+ — 1.
y

1+

y=9(x)

19.16

Figure 16: Problem 19.16.

i—1
19.14 (a) 2o = ()" + X0, 5
(b) First we point out that lim,_, inf(2)™ — 0. Then we look at the
1

i (
no o3l 1y 3y 11=(P)'n4l) 1 1 4
sum i, S =52 (1) =3 1-3 —31-3 — 3
— n
19.15 z, = m™xo + bll_’g1

We show that g(x) = mz+bis a contraction mapping: |g(z)—g(y)| =
|mz+b— (my+b)| = |m||lz—y| = L|z—y|. L < 1s0 g is a contraction
mapping and the fixpoint iteration has a unique solution by Theorem
19.1. The solution is Z = b/(1 — m).
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19.16

19.17

19.18

19.19

19.20

19.21

19.22

19.23
19.24

Draw for example the function g(z) = 2z — 3 for which g(z) € [0,1],
when z € [1.5,2].

Need to know the specific fixpoint functions used in the 19.3 problem
to solve this problem.

If g'(z) is bounded in the interval then g(x) is Lipschitz continious
in the interval. ¢'(z) = (1-3%)2 = L = max,¢[q,p) |(1+w2)2| <1 >

[a,b] — [a,b], that is g is a contraction mapping. By theorem
19.2 we now have that if the starting point in the fixed point iteration
Zo € [a,b] then the sequence given by the iteration converges to a
Z € [a,b].
Using |zp41 — 2| < L¥|z1 —x0| we compute (|21 — zp| /|21 —20])"/*
for k = 1,2,3,4 with data from the table. The result is 0.875 for
k=1,2,3,4, hence L = 0.875.
If ¢'(x) is bounded in the interval then g( ) is Lipschitz continious
423 (10—z)%2+2(10—z)z* N

(10— z)“

3(10—2)242(10—
L = max,e[_1,1) |4 (ﬁ)o a:)(4 £i” | = |(10 0z 1 oo 1)3| =75 <

0.053 <1 = g is a contraction mapping.By theorem 19.2 we now
have that if the starting point in the fixed point iteration z¢ € [—1,1]
then the sequence given by the iteration converges to a € [—1,1].
g is not a contraction mapping in [-9.9,9.9]. L = max,c[_g.9,9.9] |

3 2
i (107(%;%(4107@“” | = |(13 999; 7+ (1(2) 9999)3| < 2-107, which is larger

than 1.

Using the method from Problem 19.19 we get the estimates for the
Lipschitz constant to be 0.6954, 0.6152, 0.5867, 0.5683 for k = 1, 2, 3,4,
respectively. Alternatively we can compute |zgy1 — Zk|/|Tk — Zr—1]
which gives 0.6954 , 0.5443 , 0.5334 , 0.5165 for k = 1,2, 3,4, respec-
tively. Both these computations show that the convergence is not
linear.

in the interval. ¢'(z )

(a) If ¢'(z) is bounded in the interval then g(z) is Lipschitz contin-
ious in the interval. ¢'(z) = 22%. L = max,e[_1/2,1/9 |9’ (z)| =
2- (12| = 05.

(b)

(¢) i =9(zi—1) =9(T+2-1 —F) = %(x + (zi_1 — 2))3. Using the
fact that z = 0 we get: |z; — 2| = [2(zi—1 — 7)°|

Use amongst other things that z;_; ~ /2.

(@ 2?+2-6=0 = z(z+1) =6 — z= ($+1) The error

is estimated by [z; — &| = [g(zi 1) — 9(@)| = ;7237 — 757 <
|%| < %|a‘c — z;_1|, when the sequense of the fixed point

iteration has converged and z; 1 < Z.
(b) #2 + z — 6 = 0 adding 22 on each side gives: 222 + 1 = 2% +

2 . . . —
6 —- =z = gzﬁ The error is estimated using £ = 2 and
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T4 (zi1—%)2+6 _ 4dwi_14+24(zi_1— $)2
zi = 9@+ (i1 — F) = 55300 D) )

s — 7] = 24+ =122 g) = (im0
19.25 The equation for the line through the points (z;—1, f(z;—1)) and
(21, f(2:)) is given by y = f(i_1) + Z5=L(f(z;) — f(w;_1) which
for y = 0 has the solution z;11 = z;—1 — f(z:i)(@;i — zi—1)/(f(2;) —
f(x;—1)). Convergence factor?

Chapter 20
20.1 Proof (example, analytical) of A(ua) = (Ap)a: By definition

Apa) = Ap(ar, a2)) = A(pay, paz) = (Mpa), A(paz)).
and
(Aw)a = (Au)(a1,a2) = ((Au)as, (An)az).
The desired identity thus follows from the associative law for real
number multiplication.
20.2 f(z) = x + 2(Py(x)x —z) = 2P,(z) —z = 2{:z a — x. The corre-
sponding matrix is

204 |2 = (8, 820 = /@ + (@ = ok + ik = \/“‘1,;732 =
Vi=1

20.5 (b) a-b = |a||b| cos(F) < |a||b|- (a) |[a+b|*> = (a1 +b1)>+ (az+b)? =
at+a2+b2+b2+2a1by+2a2by = |al®+|b|*>+2a-b < |a>+|b]?+2|al|b] =
(lal + [B])?

206 (a) 7 (b)5 (c)O

20.7 (a), (c) and (e) makes sense.

20.8 6 = arccos(

10_)

V258

20.9 All a = (a1,a9) such that 2a; + az = 2. A line in the ay, a2 plane,
with normal (2,1) passing through, for example, the point (0, 2).

20.10 (a) Pya) = 450 = £(1,2) = (1,2) (b) Py(a) = £(1,2) = (0,0)
(c) Po(a) = £(1,2) (d) Py(a) = 22(1,2)

20.11 b=c+d whered=b—cand (a) c = P,(b) = 2% a=£(1,2) (b)
c=3(-2,1) (c)e=1%(2,2) @) c= %(\/_, 2)
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20.12 |c|? = |a—b|* = (a1 — b1)? + (a2 — b2)? = a? + a3 + b? + b2 — 2(a1b; +
azb —2) = |a|?> + |b|> — 2a - b = |a|? + |b]*> — 2|al|b] cos(¢)

20.13 See previous problem.

20.14 (a) Az = (5,11)T and A"z = (7,10)T (b) Az =(3,7)T and ATz =
(4,6)7

19 22 23 34 26 30 17 23
2015 (a) ( 43 50 ) (b) ( 31 46 ) (©) ( 38 44 ) (d) ( 39 53 )
19 43 19 43 -2 1 —4 3
() ( 22 50 ) ® ( 22 50 ) (&) ( 15 —0.5 ) ) ( 35 —2.5 )
. 12.5 —5.5 . 1 0
) ( ~10.75  4.75 ) 0) ( 0 1 )
20.16 The matrix element in row i and column j of (AB)T (which is the
same as in row j and column i of AB) is the scalar product of row
j of A and column i of B. The matrix element in row ¢ and column
j of BTAT is the scalar product of row ¢ of BT and column j of

AT that is, of column i of B and row j of A. That is, the matrices
(AB)T and BT AT have the same elements and are therefore equal.

20.17 (a) A is symmetric. (b) A is invertible with inverse B.
20.18 The 2 x 2-matrix P corresponding to the projection P,(b) is

1 [ af a1a2
la)2 \ aia2 a3
Obviously, PT = P. Computing, one finds that

PP — 1 ( ai + a3a3 ajay + aya’ ) _ 1 ( a?|al? ayaz|al? ) _p

la]* \ afaz + a1a3 ala? +aj la]* \ aiaz]al® a2|a|?

cos(f) —sin(6) x1
20.19 ( sin(6) cos(6) . rotates z the angle 6 counter clock-

wise.
20.20 See the section about Reflection above!
20.21 (a) =4 (b) 0 (c) 10

Chapter 21

21.2 Only the rightmost one.
21.4 (=7,2,1)

21.5 2

21.6 sqrt72/2

21.7 (a) arccos(sqrt;ﬁ) (b) ﬁﬁ (1,1,1) (c) (1,0,-1)/v/2 (or (=1,0,1)/+/2)
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21.8 (-1,0,1)
21.9 (a) true, (b) true, (c) true

21.12
1 0 0 cos(d) 0 —sin(h) cos(f) —sin(f)
0 cos(f) —sin(h) ] [ 0 1 0 ] [ sin(d)  cos(f)
0 sin(#) cos(6) sin() 0  cos(d) 0 0
(1)

21.13 Let ¢ be any non-zero vector, not parallel to b, and consider the
orthonormal basis a; = b/|b|, as = (b x ¢)/|b X ¢|, a3 = a1 X ay, and
let A be the matrix with rows a1, as and ag, so that Az gives the
coordinates of z in the basis a1, as, az. Let B be the first matrix
in the previous problem, for rotation around the first axis. Then
C = AT BA is the desired rotation matrix. Note that A is orthogonal,
sothat AT = A1,

21.14

—
SO =
O = O
OO
S
—
NS
~

21.17 (-1,-3,6), exception.

21.18 Intersection of the two planes: A(2, —1, —1), intersection of two planes
with the z; — x5 plane: (0,0,0), of course.

21.20 r + Ab(a — 2P,a), (A > 0), where (see figure) b = a — 2P,a, P,a =

%n.
Chapter 22
222 (a) 3 (b) & (¢ wfféz, if z =z +iy.
22.3 (a) 23402 (b) 522 (c) 3022
22.5 (a) V2(cos(45°),sin(45°))
(b) (cos(90°),sin(90°))
(c) %(cos(&—qﬁ), sin(60—¢)), where § = Arg(2+3i), ¢ = Arg(5+4i).
22.6 (a) 21 = (cos(45°),sin(45°)), z2 = (cos(135°), sin(135°))
(b) z; = (cos(i * 45°),sin(i x 45°)), i = 1,2,..,8.
(c) 21 = =% + \/T(cos(0/2),sin(0/2)) and 22 = —1 + \/r(cos(6/2 +
180°),sin(8/2 + 180°)), where r = | — 3/4 —i| = 5/4 and 8 =
Arg(—3/4 —14).

(d) hint: first solve for w = 2?2 to find that

wy = 2(1 +2i) + v/r(cos(6/2),sin(6/2))
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and
woy = %(1 +2i) 4+ 1/r(cos(6/2 + 180°),sin(8/2 + 180°)),

where r = |27/4 — 15i| and 6 = Arg(27/4 — 15¢). Then solve z? = w;,
i=1,2.

22.7 (a) {(0,y) : y €} (To see why, rewrite as |z — (—i)| = |z — i)
(b) {(z,y) : 2y = 1} (Because 2> = (2 — y?, 2ay))
(©) {(z,y) : [y| < =}.

22.8 If z = r(cos(#),sin(f)) and ¢ = p(cos(¢), sin(¢)), then z/{ = (r/p)(cos(6—
¢),sin(0 — ¢)).

22.10 (a) The complex plane is first rotated around the origin the angle

Arg a and streched by the factor |a|, through the mulitiplication of
z by a, then translated by the addition of b.
(b) The complex number z = r(cos(f),sin(#)) is mapped onto the
complex number 72 (cos(26), sin(26)), that is the argument is doubled
and the modulus squared.

Chapter 23

23.1 Write z° = (Z + 2z — z)® = 2° + 37%(z — z) + 32(—-%)? + (z — 7)°.
This leads to the identity z® = z° + 32%(z — Z) + E¢(z, z), with the
error term Ef(z,z) = 3z(—z)? + (z — z)3. Note that |Es(z,z| =
|2z + z|(x — #)2, and thus the derivative of 23 is 3z%. The proof for
x? is similar.

23.2 Theerror term is B¢ (z, %) = /T—VZ—(2—%)/2vVZ = (1/(/T+VT)—
1/24/z)(z—z). Furthermore 1/(v/z+v/7)—1/2VZ = VZ—/7)/(VZ+
VZ)2V/Z = (2 — 1) /(V/Z + /x)?2/Z. Collecting the results we get
Et(z,%) < Kf(z,%)(z — 7)? with K¢ (z,z) = 1/|(VZ + V2)?2VZ| =
1/8%%/2, for x close to Z.

23.3 We calculate the derivative of /z at £ = 0.5 using the difference
quotient f'(z) ~ fi(z) = (f(z + h) — f(z))/h for h; = 277 for
7 = 0,1,...,40 using matlab. Then we calculate the error in the
numerical approximation en(Z) = |f'(Z) — f;,(Z)|. Using formula
(23.27) we get hoptimat = \/€ps/ Ky, where eps is the smallest number
in Matlab and K;(z,Z) ~ 1/(8%%/2). See the figure.

23.3 Using Taylors formula and proceeding in the same way as in Chap-
ter 23.13 we get the following formula for the optimal choice of h:
Boptimar = (eps/K)'/3, with Ky = f"(z)/6. For f(z) = \/(z) we
show the error in the difference quotient as a function of h as well as
the the predicted optimal h (vertical dashed line).
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Figure 17:

10°F

10°k

The error e in the numerical derivative as a function of h and the

predicted optimal choice of h marked by a vertical dashed line. Note that this
is a log-log plot! (Problem 23.3)

23.5

23.6

23.7

23.8

23.9

For simplicity, compute the derivative at * = 1. Then the relative
(14+h)" —1
error for a specific choice of h = x — T is e, (h) = 7". The

relative errors for a few different choices of n are plotted as function
of h in the figure below. For n = 1 one should choose a large value of
h since the linearization error is zero and we only need to worry about
round-off/computational error. For larger n there is an optimal value
of h.

Perhaps the correct answer to this question is no, since we have not
yet defined sin(z) and cos(z), but we still may find the correct answer.

Two alternatives: (i) Realize geometrically that sin(z) ~ z for small
|2|. Then use the relations sin(z)—sin(Z) = 2sin (252) cos (££%) and
cos(z) — cos(T) = —2sin (£5%) sin (££Z). (ii) The second alternative
is to realize directly geometrlcally that the derivative of sin(z) is
cos(z) and the derivative of cos(z) is — sin(z).

Use Theorem 23.1 to get a lower bound for L and then show that the
function is really Lipschitz continuous with this L.

Use the fact that f(z;) = f(0) + (z —0)f'(0) + E¢(z;,0) and g(x;) =
9(0) + (£ —0)g'(0) + E,4(z;,0), which gives f(z;) = zf'(0) + Ef(z;,0)
for f and the same for g. Divide by z and realize that the limit is
f'(0)/4'(0).

This problem should perhaps be in the next chapter?
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Figure 18: The error ey, in the numerical derivative as a function of h and the
predicted optimal choice of h marked by a vertical dashed line. Note that this
is a log-log plot! (Problem 23.4)

Generalize I’'Hopital’s rule to z; — T and compute the derivatives at
T = 1. The limits are 1/2 and r.

Chapter 24

24.1 The rules for differentiating x”, the quotient rule, and the chain rule
gives:

111 1
\/:1:11 +4/ 1:[1; T [ 1120 +
T +x L1 111
+ 4/ 71151 T

1 lllmllo( —1.1 +32'1 1 111( 1. 11.72 1 + 1. lxo 1))

9 PRTE (z— 1 Ty gl1)2
\/ z-115z11

24.2 gfl = 82 (22 + 13) 0z (2?3 +x2) = 423

24.3 We plot g, for n = 21,22, ..., 2'%: By increasing n, we find that ¢,
converges to 0.6931... = In2. Now, in the Chapter A Very Short

+

1
Course in Calculus, we saw that lim (1 + —)" = e. We see the con-
—00 n

nection to lim (1 + q—n)" = 2, by noting that lim ¢, = D2%(0) and
n—oo n n—oo
De*(0) =1
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Figure 19: Comparision between the results in Problem 23.3 and 23.4. Note the
improvement using the symmetric difference formula.(Problem 23.4)

24.4 Let f(x) = 2* and suppose that we know f'(0) (see Problem 24.3)
We have 2% = 227727 ie., f(z) = f(x—2z)f(Z). The chain rule gives
f'(z) = f'(z — ) f(2), so that f'(z) = f'(0)f(z).

245 (i) a+b=1 (match the two pieces at = 1)
(ii) a = —2, b= 2 (match also the left- and right-handderivatives at
z=1)
Chapter 25

25.4 = {-3.3027,—1.6180,0.3027,0.6180, 1}, Note that the answers have
not been rounded off.

25.5 z = 3.0608
25.5 Probably an error in the assignment. 29 = 1/+/3 is more interesting.
25.8 (a) E.g. zi — 2~ y—py (w0 — 9(24))

Chapter 27
27.1 (a) [2z/(1+2?)dz = -1/(1+2?) +¢,
(b) [Q+2)Pde=—-(1+z)%/98 +c,

(¢) [21+2%)32%/(1+ (1+2%)?)dz = -1/(1+ (1 +23)?) + ¢,
where c is an arbitrary constant.
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Figure 20:

lem 23.5)

27.2
27.3

27.7

27.8

27.9

7 =10

n’Z:: .
neE 10 n = 1000 i
'+ 10 "= ]
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= 10 .
n = 1.0000000001

n'z= 10 R
n's= 10 .
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Relative errors for the numerical derivative as function of h. (Prob-

The area is given by the integral [(1+z)%dz= [~(1+2) ']} = 1/6.
Note that the velocity is the time derivative of the distance traveled,
ie., v(t) = v'(t). Thus the distance is given by u(t) = Olov(t)dt =
[0 3/2dt = [263/2/5]8° = 200v/10.

iu(z) =1,

ii. u(z) =2+1,

L+

iil. u(z) =47 + 1
iu(x)=2+1,

i. u(@) =% +z+1,

z7*+2

We need two conditions since all functions of the form Az + B, where

A and B are two arbitrary constants, will disappear when we take
the second derivative.

The solution is

+1, € [0,1),
u(z) :{ ‘ 2, Ze [1,2].

From the graph of the function f it is easy to see that it is not Lips-
chitz continuous. Alternatively, assume that f is Lipschitz continuous
and choose x —y = 1/2L for z < 1, y > 1. Then |f(z) — f(y)] <
Lixz — y| = 1/2 from the Lipschitz condition and at the same time
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27.11
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Figure 21: Problem 24.3.

we have |f(z) — f(y)] = |1 — 2| = 1. This is a contradiction and
thus f is not Lipschitz continuous. To see that u is Lipschitz con-
tinuous, note that for x < 1 we have x + 1 > 2z so that for x < 1,
y > 1 (the reverse case is treated similarly and it is straightforward
to prove that w is Lipschitz continuous on [0, 1] and on [1, 2]) we have
|f(z)=f(y)| = [1+2—2y| = 2y—(1+2) < 2y—22 = 2(z—y) = 2|z—y|.
Thus v is Lipschitz continous on [0, 2] with L = 2. (It may be simpler
to see that v is Lipschitz continuous on [0, 2] with Lipschitz constant
L = 3. Although that is true, we managed here to show a better
result.)

t=2 (hng + fOR Ny (T) dr).

If f =g on [0,1] then clearly fol |f(z) — g(z)| dz = fol 0dr=0. To
show the converse, that fol |f(z) — g(z)| dz = 0 implies f = g on
[0,1], assume that fol |f(z) — g(z)| dz = 0 and note that if f # g at
some point z € [0,1] then we must have f # g in some interval I,
containing z, since f and g are Lipschitz continous (see below). This
means that [ |f(z) — g(z)| dz > [, |f(z) — ()| dz > 0. This is a
contradiction and thus we cannot have f(z) # g(z) at any point in
[0,1]. Hence f =g in [0,1].

Now, to see that f(z) # g(x) at some point x implies that f # g
in some interval containing z if f and g are Lipschitz continous, let
h = f — g and note that if h(z) # 0 then |h(y)| = |h(z) + h(y) —
hz)| > |h(z)| = [h(y) = h(z)| > |h(z)| = Li—glz—y| > 0if z —y
is sufficiently small (and also y € [0,1]). (Note that f — g is also
Lipschitz continous.) Thus for y in some small interval containing z
we have |f — g| > 0 which is the same as f # g.

If [ |f(z) — g(x)| dz is replaced by [, (f(z) — g(z)) dz then this
integral is still zero if f = g on [0, 1] but we may no longer conclude
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that f = g if the integral is zero, since we can have for e.g. f =z
and g = 1 — z that fol(f(w) —g(x)) dz =0 while f # g.

Chapter 28

28.1

28.2

(a) a/2+b/3
(b
(

N =

(c

d) —2afora<—1,14+a?for -1 <a <1, and 2a for 1 < a.

(
z3/3
(b) z*/4
(c) /4
(d) /3 —=

a

)
)
)
)
(e) (1—a)'l+ (1+a)'1)/1L.
)
)
)

28.3 Integration by parts gives 1/1003002.

28.4

28.5
28.6

28.7

28.10

(a) 0

(b) (f(7) = f(0))/7

(c) (f(124) — f(165))/17

1/22.

(a) =

(b) 3+6(x—1)+4(x—1)2+(z—1)3

(¢c) Take f(x) = vz + 1 instead. Then the Taylor polynomial is
1+x/2—2%/8+ 32%/48 — 5z /128 + . ..

The Taylor series is f(z) = r(z—1)+r(r—1)(z—1)?/2+7r(r—1)(r—

2)(x —1)3/6 + ..., and the limit is 7.

The first formula, [ dy = y, states that the total length is the sum

of its parts. This thus gives us that y is a primitive function of 1.

The second formula, [y dy = %, states that the area of a right

. . . 2 .
triangle, the one with corners at (0,0), (y,0) and (0,y) is %-. This

2
thus gives us that %- is a primitive function of y.

The third formula, [z dy = 2y — [y dz, states that the area of a
rectangle with sides of lengths x and y is zy, which is equal to the
sum of the area [y dz below the curve y = y(z) and the area to the
left of the curve z = z(y) for a curve going from (0, 0) to (z,y). This
thus gives us the formula for partial integration,

/:zsd—y dx:xy—/yda:,
dx

since dy = g—zdx.
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28.11 Use the mean value theorem for integrals on the last term in Taylor’s

theorem:
Ji B () dy = D (@) [ BT dy
! _ ("+1)(z) ( )7L+1
- (n+1)! :
28.12 Integrating by parts we get
Jof@)dy = foi:v
= fo da:
= j fo
- fo f,]_

This is the same as Leibniz’ formula for integration by parts with a
bit more explicit notation for the limits.

28.13 For z < y we have |F(z) — F(y)| = | [} f(z)dz| < [Y|f(z)|dz <
[JLpdz = Lp [} dz = LF|a: —yl, if z,y € [0,a]. The same thing
will hold with z and y interchanged if x > y. Thus F' is Lipschitz
continuous on [0, a] with Lipschitz constant L.

28.14 Since the integral is Lipschitz even if the function is not, if the func-
tion is bounded as we had in the previous exercise. It is better to be
Lipschitz than bounded, since a Lipschitz continuous function is also
bounded (on any finite interval in the domain of Lipschitz continu-

ity).
28.15 Integrate by parts. The functions f and ¢ should be n times dif-
ferentiable and %, n=20,1,...,n—1or %, n=0,1,...,n—1

should be zero at the endpoints of the interval.
28.16 Notice that 0 < (a— (@, )0, 45— (4,9)v) = 1—2(a,v)(@,v) + (1, v)?
1 — |(@,)|?. Thus |(@, )| < 1, which gives |(u,v)| < lulll|v]l-
28.17 Take Z as one of the endpoints of the interval I. Notice that v(z) =
—i—fz " dy—fm v'(y)dy. Thus |v(z)| < [;[v'(y)|dy = [;1-
|v( ) dy < ||1||L2(I)||v lz2¢ry by Cauchy’s 1nequa11ty This gives
lollzery = /S W@ d < [T, B 0 ry do = Lzl s /T, do =

1112 pllv' 2y = f; dellv'llz2y = Crllv'llz2(r), where the con-
stant C)I is the length of the interval.

28.18 Since Cy = 1, we want to show that ||v||2 (I) < ||[v'||%(1).
a) [[oll3(1) = = < IVIIZ(D) = &,

b) Wlli(D) = 7z < WIEA) = /&

o) oliZ() = g < IWIIEI) =4/

i
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Chapter 29

29.1 Note that log(4) = ;' z7'dz > 1 x 1/2+2 x 1/4 = 1, and log(2) =
[Pz ldr >1x1/2=1.

29.2 log(2™) = nlog(2) — o0 as n — oo. log(27") = —nlog(2) — —oo as
n — 00.

29.3 The correct change of variables should be z = y/a, which leads to
faab y ldy = flb 27 tdz = log(b).

29.4 Note that log' (1+z) = 1/(1+z) < 1 = z' and the inequality holds for
z = 0 and thus it holds for z > 0 since z grows faster than log(1 + z).

The other case is similar.

29.5 By the Meanvalue theorem log(1 + z) = 11+w 27tz = x€£71, with
£ € (1,r), and z£~! < z since £~ < 1. The other case is simi-
lar. Estimating the area we have, for £ > 1, we have log(1l + z) =
f11+w 27'dz < x and for —1 < z < 1 we get log(1+z) = —log(1/(1+
z)) = —fll/(lﬂ) 27tz < 2.

29.6 log(a) — log(b) = log(a) + log(1/b) = log(a) + log(1/b) = log(a/b).

20.7 Y (-1)rt e
1 -1

29.8 3 log {211

29.9 log(z") = log(2?/?) = plog(x'/9) = quog(xl/q) = Llog(z) = rlog(z).

29.10 Plot u(z) = m:;: - fﬂ for different values of a # 1 but close to 1.
Note that u tends to infinity when z tends to infinity if @ < 1. Since
we know that the solution is u(z) = log(z) for a = 1, the solution

tends to infinity if a < 1.

20.11 a) o= (2)*/°

’

32246
20.12 a 5 T6a7

)

)

)
b) L

)

)

)

z log(z)’
142z
z+z2?
1

z?

log(x).

Chapter 30

30.1 (a) For endpoint: Qp < 2h, and midpoint Qp = 0.
(b) For endpoint: Q4 < &Y, h32? ~ 4h for small h (why ?) and
2 2
for midpoint: @Qp < % E;V:1 h2z; ~ % for small h.
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(¢) For endpoint: @) < %Z;V;Ol he™%i ~ (1 — e~2), and for mid-
point Q < L Z;-V:_Ol he % m L (1—e72).
30.4 Error estimate for the trapezoidal rule Q, < Zjvzl (maxyer, [f"(y|h3)h;

30.6 The Gauss points on I = [~1,1] are &; = —1/v/3 and &2 = 1//3.
The resulting quadrature rule is exact for polynomials of order three.

30.7 Error in the formulation of the problem ! Square the result should
be multiply the result by four. You will find an approximation of .

Chapter 31

31.1 With U™ () = U™(@l-,) + haU™ (), we get U™(&) = =2y
Proceed in the same way as in the original construction of the expo-
nential function.

31.2 Note! Misprint. Should be z > —n.
Use that that log(1+y) <y with y = 2/n > —1.

31.3 Let v(z) = 1/u(z). Then o' = —Zu = —1/u = —v. Since also
v(0) = 1/u(0) = 1, v solves the equation.

31.4 The first expression is the construction of the exponential at level
n, the second the one at level n + 1. Since the increment from each
point is the function value itself in that point, taking two steps over
two intervals gives a larger value than taking one step over the whole
interval. Convince yourself of this by drawing a figure. If you are
still not convinced, then let y = 3% and notice that

2

1
L+ )™ = (L +9)™ S L4y + )7 = L +y/2™ = 1+

2n+1
4 ) '

$2"+1

31.5 The crucial step is to show that (Z) # < (”;:1) m Show this by
writing down the expressions for the binomial coefficients, boiling it
down to just k factors in both expressions, divide every factor by n
in the left-hand side and by n + 1 in the right-hand side. Simplify
and conclude that the left-hand side is smaller than the right-hand

side.

31.6 If the interest over the year a is divided into parts, so that at N times
during the year, an interest of a/N is added, then the capital u is
changed from year n to year n + 1 as

a
Unt1 = (1+ N)Num
so that the effective annual interest is @ = (14 &)™ . For large values

of N we have a ~ exp(a), which in turn is approximately equal to a
if the interest is small. (As it usually is ... )
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31.7 Using the Taylor expansion of exp(Az), we see that as A\ tends to
zero, the solution tends to u(x) = x2/2, as it should, since for A =0
the equation is v’ = z with the initial condition u(0) = 0.

31.8 This exercise should be removed.
See exercise 31.11.

31.9 Lgm = L exp(log(z)r) = exp(log(z)r)r/z = z"r/z = rz" L.

31.10 Note! Misprint. Should be A(z) = z".

u(x) = ug exp( T++11)

31.11 exp(a) exp(b) = exp(log(exp(a) exp(b))) = exp(log(exp(a))+log(exp(b))) =
exp(a+b) and (exp(a))® = exp(log((exp(a))*)) = exp(alog(exp(a))) =
exp(aa).

31.12 Let u be the solution of 4’ = u on (0,1], u(0) = 1. Then v(z) =
u(z —1) solves v’ = v on (1, 2], v(1) = u(0), since v'(z) = v'(z—1) =

(m —1) = v(z) and v(1) = u(0). Now, w(z) = u(l)v(z) solves
w on (1,2] and w(1) = u(1), so

B (z), € [0,1],
u(e) ={ R b

is a continuously differentiable solution to 4’ = @ in (0, 2] with @(0) =
1. Continuing this way we can construct a solution for all z > 0. To
construct a solution for z < 0, consider 1/u(—=x).

31.13

n n41

exp(z) = 1+$+$2—2+w6—3+...+w—,+(nH),exp(fz( )

n!

z! zm ! A
Yico T+ Gogry exP(2(2)),

for some Z(z) € (0,z).

b) —1 (2% +1) exp(—2z?).

b) exp(z + 1),
¢) (1+ 22?%) exp(a?),
d) (32% + 22*) exp(a?),

a—1
log(a)’

exp(2) — exp(1),
exp(1)—1
2

31.16 a

)

L

27

One cannot express the primitive function of exp(—z?) in simple
terms of e.g. exponentials, polynomials or logarithms.

)
)
)
)
)
e) —2xexp(—x?).
)
)
)
)
)

41



31.17
31.18

31.19

The number is 7!

For z > —1, we have log(1 + z) < z, which gives 1 + z < exp(x) for
x> —1. For x <= —1 we have 1 + z < 0 < exp(z).

Note! Misprint. Should be exp(z) > 1 + z.

For n = 0 the left-hand side is € f(x) and the right-hand side is
e’ - 1. f(z) =e”f(x). The induction step:

Iom (@ f(@) = L& (e f(@))
i+ 2) 1)
= e (1+ 4 ) fl@)+e" L (1+ %) f(x)
e’”((l —m)" & (1 +,%))f ()
= o (1+4) 1+ 5)" (@)
= e (1+4)" f(a).
Chapter 32

32.1-4

32.5
32.6

32.7

32.10

32.11

32.12

Insert the given expressions into the differential equations and ver-
ify that the equations and boundary conditions are satisfied. Mis-
sprint: Problem 32.3 r cos(vVk(t — ) should be r cos(vVE(t + ).
u(z) = —cos(z) +2/3 — 1/v/2.

let v(z) = x and u(z) = sin(z). Note that u/(z)? + u(z)? = 1 for all
z. In particular |[u'(z)| < 1 = /() for all z and since v(0) = u(0)
the first inequality follows. The second inequality follows in the same
way by observing that tan(z))’ = 1/ cos(z)? > 1 for z € (0,7/2).
sin(z)/z = (z — cos(y)z?/2)/x = 1 — cos(y)z/2 = 1 as x — 0 ( for
some y € [0, z]).

(a) 5cosl—3sinl.

(b) e(sinl —cos1+1)/2.

(b) sinl+ 2cos1.

7 = 4darctan(l) = 4(1 -3+ % —...). Use a few terms to get an
approximation of 7. One term gives m = 4, which is a crude estimate
of w. Using more terms gives a better estimate. However, this method
we will need a very large number of terms to get a reasonable accurate
result, since the terms converge to zero quite slowly. For five correct
decimals you will need about 10° terms!

Take the tan of both sides and use formula (32.20). The suitable
numbers are a,b € (0,1) such that b = +=%. Minimizing the largest

of a and b gives a = b = V2 - 1, Wthh is not a rational number.
Choose a and b rational, but close to this value.
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32.13 The Taylor expansion of arctan(z) converges faster for small values

of |z| — for |z| > 1 it doesn’t converge at all — since in the expansion
we take powers of the argument.
With a = 1/2 and b = 1/3, we get five correct decimals in less
than ten iterations, which is surely an improvement. The formula
suggested in the exercise gives even better convergence, since the
arguments are even smaller.

32.14 a) For z € [—1,1], we have sin(arcsin(z)) = z. Thus sin(arcsin(—z)) =

—z = —sin(arcsin(z) = sin(— arcsin(z)) and, since arcsin(z) € [—7/2,7/2]
and sin is increasing on this interval, we may conclude that arcsin(—z) =
— arcsin(z).

b), ¢), d), e) and f) are treated in a similar way.

32.15 i g,
ii. 7,
ii. %,
iv. 1

V.
vi.

T sF R

~—

3216 i 4/1(vV2-1
i. T(v3-1).

. 2\1/_—5z4
32.17 1. m,
ii. The derivative does not exist | Why ? Hint: check the domain

of definition of arcsinus.
2z

((EEOREE
1
T 2Vz(1+z)(arctan(/z))2
32.18 For computing z = arcsin(y) note that it is the solution of sin(z) = y,
i.e. f(z) = 0for f(z) = sin(z)—y. Solve this equation in the standard
way, i.e. by fixed point iteration, e.g. Newton’s method.

7

iii.

iv.

32.19 Do the same as when calculating the derivatives of arcsin and arccos,
and use that cosh?(x) — sinh?(z) = 1.

32.20 With the substitution 2 = sin(y) we get Ll1 V1—a2dr = f:/jz cos?(y)dy =
/2.
Chapter 33
33.1 (a) —z3 cos(2z) + 1sin(22)

(E) x? sin(x) + 2z cos(x) — 2sin(x)
(c) —% exp(—2x) — %exp(—Qx) + %
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arctan(z) — 1 log(1 + 2?)

(exp(—z)(5 sin(2z) — § cos(2z)) + 1)

log(1 + z?)

(1+e®) —log(2)

xp(z?) — %, with substitution z = y2.

—1)5/2—(=1)5/?)+ 3(($ 1)3/2 —(—1)3/?), with substitution

g
Sl oue 8 8 wl=
@ 0”

ST
:d ~—~~
|
8
—

—cos(z))® — (=1)*)
log(|z + 1[) + 3 (log(|z — 2[) —log(| — 2[)), for =1 < z < 2.
—2z—1 log(|a: 1])+ 22 (log(|z+3|) —log(|3])), for =3 < z < 1.
(arctan(“”“) - a,rctan(l))

log(lz — 1] — §...
(msin(m) + cos(m)) = —2

Wl
—~~
/\

|
8
w“""

DN oo o=

o Oy

) u(z) = (& +uy')™"
) u(@) = (z + sy/u0)*/4
(¢) u(z) = exp(exp(z + log(log(uo))))
) u(z) = tan(z + arctan(ug))
) u(z) = arctan(exp(z + In|tan(ug/2)|))
() u(z) = =1+ /14 2z + 2ug + ul.
36.4 The velocity satisfies the equation v' = g — bv? with v(0) = 0 and b
a positive constant. The solution is

Vo —1)
Vet 1)’

check units and compute the limit of the velocity as ¢t — oo.
36.4 t=e€®+1.

v =

Chapter 37

37.1 See figures 22 and 23 for the numerical solution.
The extended system is not separable.
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37.2

37.3
37.4

Note that fOT 2 dt = ;((0? 1 ds =log (Z((:g))) =0, since z(0) = z(T).

Thus fOT(a —by) dt = 0, which gives § = %. Same for &. Adding
dissipative terms —ex and —ey gives T = <35, § = “5=.

See figure 24.

Note! Misprint. Should read “Show that for b =1 and w = 0,

the economy oscillates for a > 1.” End of exercise, i.e. you
can ignore the rest of this exercise, from “Show that there

2
To find the equilibrium state, set © = ¥ = 0.

To see that the economy oscillates for a > 1, sketch the phase-plane
curves or write the system as @' = Au for & = (u,v) and some matrix
A. Determine a so that A has imaginary eigenvalues.
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25F q

0.5H q

0 I I I I I
0 5 10 12 20 25 30

Figure 22: A typical solution to the standard Volterra-Lotke equations, with
a=b=c=d=1. (Problem 37.1)

0.5 q

0 5 10 15 20 25 30 35 40 45

t

Figure 23: A typical solution to the extended Volterra-Lotke equations, with
a=b=c=d=e= f=1. (Problem 37.1)
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0.8r

0.7

Figure 24: Phase-plane curves for the solution for a number of different initial
values for u and v. The equilibrium is at v = 0, i.e. no infectives. The number
of remaining suscebtibles depends on the initial values. (Problem 37.3)

-50 L L L L L L I I I
0 5 10 15 20 22 30 35 40 45 50

Figure 25: The solution for b = 1 and w = 0 for different values of a. For a > 0
the solution oscillates.
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