
TMV040 Tillämpad matematik K, 2002–03

STUDIO 4. THE TANK REACTOR: STABILITY.

In this exercise we first consider the problem how to choose the flux through the tank reactor
and the temperature of the cooler, to obtain a stationary point at given (wanted!) values of
the concentration and the temperature in the tank reactor. From numerical simulation we then
observe that this operating point is not stable. To be able to “adjust” the tank reactor so that it
will operate in a stable way at our desired stationary point, we need to understand the reason for
the instability. We therefore perform a linear stability analysis based on eigenvalues.

Important: write a readable report of your work in each studio session. You will need this at
the end of the course when you prepare for the written exam; several exam questions will be based
directly on the studio work which is only documented in your own notes and the instructions.

Some exercises are called homework in order to save time in the studio classroom.
Theory: S. Larsson, “Dynamiskt system. Stabilitet.” (K)

1. Introduction

(K 1.1) Recall from Studio 2. The Tank Reactor: Heat Balance the system of differential
equations,

(1)

dX1

ds
= U1(1 − X1) − X1f(X2) = F1(X, U), s > 0,

dX2

ds
= U1(1 − X2) + αX1f(X2) − β(X2 − U2) = F2(X, U), s > 0,

X1(0) = X1,0, X2(0) = X2,0,

which is our mathematical model for the dynamics of the tank reactor. Recall, also, the state
variables X1 = X1(s) (dimensionless concentration) and X2 = X2(s) (dimensionless reactor tem-
perature), depending on s (dimensionless time). These two variables, that describe the state of
the tank reactor, are the ones that we compute by solving (1), i.e., X1 and X2 are output data.

There are two kinds of input data. First we have the initial data, X0 =
[
X1,0

X2,0

]
, then the control

variables U1 = U1(s) (dimensionless flux) and U2 = U2(s) (dimensionless cooler temperature).
Recall, finally, that kτ = f(X2) = δeγ(1−1/X2) is the dimensionless rate coefficient given by the

Arrhenius law. In Studio 3. The Tank Reactor: Arrhenius’ law you determined the dimensionless
numbers γ and δ, which can be thought of as non-dimensional counterparts to the activation
energy and the rate constant of the reaction, by fitting the rate law to data. As for the other two
dimensionless numbers appearing in (1), α is also reaction dependent since it is proportional to
the heat of reaction, whereas β is proportional to the area and the heat transfer coefficient of the
cooler.

Our final goal is to design the tank reactor in such a way that it runs in a stable manner at

a specified, desired, operating point X̄ =
[
X̄1

X̄2

]
. In order to achieve this goal, we first determine

corresponding values of the control variables Ū =
[
Ū1

Ū2

]
, for which X̄ is a stationary point. Then,

we analyze the stability of X̄ with respect to perturbations of input data and, if necessary, change
the value of one or more design parameters. This could, for instance, physically mean varying the
area of the cooler, i.e., varying the value of β in our mathematical model (1).
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2. Stationary points

(K 1.2) Our first task is, given a desired operating (stationary) point X̄ =
[
X̄1

X̄2

]
, to determine

corresponding values of the control variables Ū =
[
Ū1

Ū2

]
by solving the system of equations,

(2)
0 = Ū1(1 − X̄1) − X̄1f(X̄2),

0 = Ū1(1 − X̄2) + αX̄1f(X̄2) − β(X̄2 − Ū2).

Exercise 1. Show that the solution to (2) is given by,

(3)
Ū1 =

X̄1

1 − X̄1
f(X̄2),

Ū2 = X̄2 − 1
β

( X̄1

1 − X̄1
(1 − X̄2)f(X̄2) + αX̄1f(X̄2)

)
.

�
We here stress a subtle point. Given X̄ , clearly, Ū is uniquely defined by (3). On the other

hand, if we instead consider Ū as fixed, we know that X̄ is one solution to (2), however, it might
not be the only solution, i.e., there may exist more than one stationary point corresponding to Ū .
We will return to this later.

To concretize, let us now specify the values of the state variables at the desired operating
point: our objective is to design the tank reactor to operate in a stable manner at (cf − c̄)/cf =

0.5 (“50% omsättningsgrad”) and at reactor temperature T̄ = 99◦C, i.e., at X̄ =
[
X̄1

X̄2

]
=[

0.5
(99 + 273.15)/Tf

]
.

Exercise 2. Modify the file data.m from Studio 2. The Tank Reactor: Heat Balance, so that,
given X̄ (as above), Ū is computed from (3). At the same time, check that you have changed the
old values of γ (= 30) and δ (= 0.1) that we used in Studio 2 to the new ones that you determined
in Studio 3. The Tank Reactor: Arrhenius’ law. Also, make sure that you have set the area of the
cooler AK = 1 m2. Hint: You need to change the line
Ubar = [1; 0.97];

into
Xbar = [0.5; (99 + 273.15)/Tf]; % Tf = 70 + 273.15
Ubar = zeros(2,1); % initialize (column vector) Ubar
Ubar(1) = ...; % insert the expression for Ubar(1)
Ubar(2) = ...; % insert the expression for Ubar(2)

�
Exercise 3. Check data.m by calling tank2.m that you wrote in Studio 2. The Tank Reactor:
Heat Balance:
>> data
>> Xprime = tank2(0, Xbar)

What should the result be? (Note that the value of the first argument may be given arbitrarily,
since there is no explicit time dependence in the right-hand side of (1).) �

3. Instability of the operating point

We now perform a first stability check of the operating point X̄. We do this by introducing
small initial perturbations, i.e., small initial deviations from X̄, in X . In this test, we do not
consider perturbations in the control variables, i.e., we set U = Ū in tank2.m.
Exercise 4. Assuming that solve2.m is the name of your script file from Studio 2. The Tank
Reactor: Heat Balance, from which the call to ode45 is made and the solution is plotted, solve (1)
by giving the following Matlab commands:
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>> data
>> S = 20;
>> X0 = Xbar + [0; 0.05];
>> solve2
>> X0 = Xbar - [0; 0.05];
>> solve2

Is X̄ stable with respect to these perturbations? Also try some other initial perturbations. �
As you have just seen, a small deviation from X = X̄ causes the tank reactor to depart from the

desired operating point. Since these kinds of perturbations are inevitable in practice, the reactor
will not remain in the desired state, which is therefore not stable. Rather, it will (depending on
the initial perturbation) reach one of two other equilibrium points, which seem to be stable ones.
These two are also stationary points, corresponding to Ū , i.e., they are also solutions to (2). This
is the non-uniqueness mentioned in Section 2.

4. Linear stability analysis

(K 1.3) In order to learn how to “adjust” the tank reactor so that it will operate in a stable way
at X̄, we need to systematically study the stability of solutions to (1). We will perform a linear
stability analysis based on the assumption of small perturbations.

Let X(s) with input data X0, U(s) be a solution to (1) that is close to X̄ . With

X(s) = X̄ + ∆X(s), X0 = X̄ + ∆X0, U(s) = Ū + ∆U(s),(4)

we may consider ∆X(s) as a perturbation in X(s) caused by the perturbations ∆X0 and ∆U(s)
in input data.

If ∆X(s) and ∆U(s) are small, we obtain the linear system

(5)
x′(s) = Ax(s) + Bu(s), s > 0,

x(0) = x0,

for the approximate perturbation x(s) ≈ ∆X(s) caused by the perturbations in input data x0 =
∆X0 and u(s) = ∆U(s). In (5),

(6) A =




∂F1

∂X1
(X̄, Ū)

∂F1

∂X2
(X̄, Ū)

∂F2

∂X1
(X̄, Ū)

∂F2

∂X2
(X̄, Ū)


 =


−Ū1 − f(X̄2) −X̄1f

′(X̄2)

αf(X̄2) −Ū1 + αX̄1f
′(X̄2) − β


 ,

where f ′(X̄2) =
γ

X̄2
2

f(X̄2), and

(7) B =




∂F1

∂U1
(X̄, Ū)

∂F1

∂U2
(X̄, Ū)

∂F2

∂U1
(X̄, Ū)

∂F2

∂U2
(X̄, Ū)


 =


1 − X̄1 0

1 − X̄2 β


 ,

are called Jacobi matrices of F (X, U) =
[
F1(X, U)
F2(X, U)

]
at X̄, Ū .

Homework 1. Verify (6) and (7). �

5. Stability with respect to perturbations of initial data

(K 1.4) In this section we consider the case u(s) = 0, i.e., we only consider perturbations in
initial data. In this case, (5) simplifies to

(8)
x′(s) = Ax(s), s > 0,

x(0) = x0,
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with solution (we assume that A is diagonalizable)

(9) x(s) = c1e
λ1sg1 + c2e

λ2sg2,

where λi, gi are eigenvalues and eigenvectors of A, and the ci are constants depending on x0.
Clearly, the growth of x(s) (and accordingly the stability of X̄) depends on the eigenvalues of A.
Exercise 5. Compute the eigenvalues of A using Matlab. Hint: First write the function file
jacobianA.m that computes A:
function A = jacobianA(Xbar)
global alpha beta gamma delta Ubar
A = zeros(2,2); % initialize (2x2 matrix) A
A(1,1) = ...; % insert the expression for A(1,1)
A(1,2) = ...; % insert the expression for A(1,2)
A(2,1) = ...; % insert the expression for A(2,1)
A(2,2) = ...; % insert the expression for A(2,2)

Then you can compute the eigenvalues of A by typing:
>> data
>> global A % we declare A as global because we will need this later
>> A = jacobianA(Xbar)
>> eig(A)

�
As you (hopefully!) noticed, A has two real eigenvalues, one positive and one negative. Because

of the positive eigenvalue one of the terms in (9) will grow exponentially with time, and this
explains the instability of X̄.
Exercise 6. Solve (8) with the same initial perturbations as in Exercise 4. Hint: First write the
function file lineartank.m that computes the right-hand side of (8):
function y = lineartank(s,x)
global A % this is the reason we declared A as global
y = A*x;

Then modify solve2.m into linearsolve.m. (Just replace tank2 by lineartank in the call to
ode45, and X by x everywhere.) Now you can solve (8) by typing:
>> figure % opens a new figure
>> data
>> S = 1;
>> x0 = [0; 0.05];
>> linearsolve
>> x0 = [0; -0.05];
>> linearsolve

�
One clearly sees the perturbation growth. Note that (8) was derived on the basis of the as-

sumption of small perturbations and that it is not valid if x(s) becomes “too” large. So there is
no point in computing much further than to S = 1.

It is instructive to compare X(s), computed as in Exercise 4, to X̄ + x(s), with x(s) computed
as in Exercise 6:
Exercise 7. First solve (1), as in Exercise 4, with S = 1 and X0 = Xbar + [0; 0.05]. Then
solve (8), as in Exercise 6, with S = 1 and x0 = [0; 0.05]. Now compare the first solution, X,
to Xbar + x, where x is the second solution. You can do the comparison by writing and running
the following script:
clf % clear current figure
plot(X(:,1), X(:,2)) % plots second versus first component of X
hold on
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plot(Xbar(1) + x(:,1), Xbar(2) + x(:,2), ’--’)
title(’Phase portraits: Solid: X Dashed: Xbar + x’)
xlabel(’X_1, Xbar_1 + x_1’)
ylabel(’X_2, Xbar_2 + x_2’)
hold off

�
Note how the two curves successively diverge, and how the linear approximation fails to find

the stable equilibrium point.
Next studio session, Studio 5. The Tank Reactor: Design for Stability, we will conclude the

exercise on the tank reactor by “adjusting” it in such a way that the operating point X̄ becomes
stable. The idea is to try to “move” the eigenvalues of A so that their real parts get the right
(negative!) sign. We will also briefly consider stability with respect to perturbations in the control
variables.


