TMA225 Differential Equations and Scientific Computing for Kb2, part A
NOTES ON TIME DEPENDENT PROBLEMS IN 2D

1. THE MODEL PROBLEM

We first consider the following time dependent model problem,

u—V-(aVu) = f, z=(21,22) €, 0<t<T,
(1) u(z,t) = 0, z=(r1,22) €00, 0<t<T,
u(@,0) = uo(z), == (1,32) €,

where u = u(z,t) = u(xy,x2,t) is the unknown function that we wish to compute, with time
derivative, %—’t‘, denoted by 4. We assume that Q C R? has a polygonal boundary. The functions
a = a(z,t) and f = f(z,t) are data to the problem. We also need to specify boundary data: in
this model problem we have homogeneous Dirichlet boundary conditions (u = 0) on the entire
boundary 9, for all times, 0 < ¢ < T, and initial data: ug(z), which specifies the solution, for
z € Q, at time t = 0.

2. THE NUMERICAL METHOD

We shall construct a numerical method by first discretizing in space (using finite elements) to
obtain a finite dimensional system of linear, ordinary differential equations, which we finally solve
numerically using, e.g., the backward Euler method.

2.1. Space Discretization.

2.1.1. Variational Formulation. Multiply the differential equation in (1) by a test function v =
v(z1,x2) such that v = 0 on 0N and integrate over Q:

// wo dridry — //V-(aVu)vda:ldxz = // fvdxidey,, 0<t<T.
Q Q Q

We now integrate by parts (see the notes on Robin Boundary Conditions in 2D for details):

// wv dzdxs —/ (n-(aVu))vds + //aVu-Vuda:ld:vg = // fodridrs, 0<t<T.
Q a0 Q Q

Since

v=0 on 91,

// w dridrs + //aVu-Vvdwld:cg = // fvdridzs, 0<t<T.
Q Q Q

We thus state the following variational formulation of (1):

we obtain
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Find u(z1, z2,t) such that, for every fized t: u(x1,z2,t) € Vg, and

(2) // wvdzidzy + //aVu-Vvdxld:vz = // fvdzidzs, 0<t<T, Yvel,
Q Q Q

where V5 denotes the vector space of functions v = v(z1, £2) such that v = 0 on 99, that are
sufficiently regular for the integrals in (2) to exist.

2.1.2. Discretization in space. In order to discretize (2) in space, we introduce the vector space
Vio of continuous, piecewise linear functions, v(z1,2), on a triangulation, T, = {K;}™% of (,
with the corresponding set of internal nodes, Nyo = {N;}1intnedes gych that v = 0 on 012, and
state the following (space) discrete counterpart of (2):

Find U(z1, T2, t) such that, for every fized t: U(x1,z2,t) € Vo, and

(3) // Uvdzidzy + //aVU-Vvd;cldxg = // fodridre, 0<t<T, Vv € V.
Q Q Q

2.1.3. Ansatz. We now seek a solution, U(z1,%2,1), to (3), expressed (for every fized t) in the
basis of tent functions {go,-}?;tmdes C Vao. (Note that only “tents” with “poles” at the internal
nodes belong to the basis, since all functions in Vjg are zero on the boundary 99.) In other words,

we make the Ansatz

nintnodes

(4) U(xlax%t) = Z Ej(t)‘pj(xla$2)a

and seek to determine the (time dependent) coefficient vector

& (t) U(N1,t)
t U(Ny, t
w-| 0 |_ Net) |
gnintnodes(t) U(Nnintnode37 t)

of nodal values of U(z1, z2,t), in such a way that (3) is satisfied.

Consider very carefully the structure of U(x1,x2,t) in (4): For every fized time, ¢, we note that
U(z1,22,t), as a function of z = (x1,2,), is a continuous, piecewise linear function with weights

given by &(t).
2.1.4. Construction of space discrete system of ODE. We substitute (4) into (3),

nintnodes nintnodes
. ; &(t) (//ijvdwldwz> + ]Z:; &(t) <//Qachj-Vvd:c1dm2) =

// fvdridze, 0<t<T, Vv € V.
Q

Since {go,-};’i:nfmdes C Vo is a basis of Vi, (5) is equivalent to
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nintnodes nintnodes

> 60([[ewdndn) + S &0([[ aves Vodns ) -
© =1

// foidridzs, 0<t<T, ¢=1,... nintnodes,
Q

which is an nintnodes-dimensional system of linear, ordinary differential equations. Introducing
the notation

M, j Z//Q @j (@1, 22)pi(21,T2) dr1d2,
a,-,j(t) Z//Q a(ml,mz,t) chj(ml,mz) -V(pi(."l,'l,.Z'Q) d.’L’ld.’L'Q,

bz(t) ://Q f(iUl,.'L'Q,t)QOi(ZL'l,IL'Q) dllfldfli'z,

we can write the system of linear, ordinary differential equations (6), as (we denote nintnodes by
nin):

( my 1 él (t) + ... + M1 nin énin(t) + al,l(t) 51 (t) + ... + al,nin(t) &ﬂn(t) =
Mo &) 4+ i Mopmban®)  + @O &E) + o+ () () =
{
\ Mhnin,1 él (t) + ... + Mnin,nin énin(t) + anin,l(t) 51 (t) + ... + anin,nin(t) §nin(t) =
O<t<T.

In matriz form, this reads,

(7) ME®R) + A E(t) = b(t), 0<t<T,

mia e M1 nin
where M = : : is the mass matriz,

mnin,l L] mnin,nin

bl (t)a

b2 (t)a

bnin (t)3
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a11(t) ... Qran(t)
A(t) = : : is the (possibly time dependent) stiffness matriz, and
Onin1(t)  --.  Guinnin(t)
by (t)
b(t) = : is the (possibly time dependent) load vector.
buin (t)

Exercise 1. Show that, for the time dependent reaction-diffusion problem with Robin boundary
conditions,

w—V-(aVu)+cu = f, z=(z1,22) €Q, 0<t<T,
—n-(aVu) = ~vy(u—gp)+gn, == (x1,22) €00, 0<t<T,
u(z,0) = wuo(2), T = (z1,22) € 1,

the system (7) generalizes to,
(8) ME() + (A(t) + Me(t) + R(t)E() = b(t) + ro(t), 0<t<T,

where M. (t) is the mass matriz coming from the reactive term, c(z1,z2,t)u(z1,22,t), and R(¢),
rv(t) are the contributions from the Robin boundary conditions to the system matrix and right-
hand side, respectively. (Compare with the notes on Robin Boundary Conditions in 2D). Note
that (8) is an nnodes-dimensional system of linear, ordinary differential equations, since in this
case we also include the nodes on the boundary 9f2.

2.2. Time Discretization. In order to discretize (7) in time, welet 0 =t < t; < t2 < --- <
t;, = T be discrete time levels with corresponding time steps k,, = t, —t,_1,n = 1,..., L. Further,
we let £&” denote an approzimation of £(t,), n=1,..., L.

There are different possible choices of initial data, £ = £(0), to (7): the simplest is to let

&(0) (V1)
o - £(0) 3 o (N2)
é‘nintn(;des(o) Uo (Nni;xtnodes)

nintnodes

which corresponds to letting U (z1,z2,0) = 3735} & (0)pj(z1,22) be the nodal interpolant of
uo(x1,22) = u(x1,x2,0). (An alternative would be to choose U(z1,x2,0) as the Lo (Q)-projection
of ug, but then we would need to compute £°.)

We now integrate (7) (element-wise) over one time interval [t,_1, ts],
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tn ) tn tn
Méwdt + [ A@) @) dt = / b(t) dt.
tn—1 tn—1 tn—1
Since M is a constant matrix, we get,
tn

©) ME) ~ €t + [ AWEBE = [ b

tn—1 tn—1

Given an approximation, £" !, of £(t,_1), approximating the integrals in (9) using right end-point
quadrature gives the backward Euler method defining ™ by,

M(gn - gn_l) + A(tn)gnkn = b(tn)kna

ie.,

M £n _ En—l

. + A(tn)E" = b(tyn).

The backward Euler method for solving (7) thus becomes: Given £° = £(0), forn = 1,...,L,
solve the linear system of equations,

(M + kpnAn)E™ = ME™ ™ + knb,
where we have introduced the notation

Ap = A(tn), bn = b(t,).

Exercise 2. Show that the backward Euler method for solving (8) reads: Given &0 = £(0), for
n =1,...,L, solve the linear system of equations:

(M + kn(A(tn) + Mc(tn) + R(t)))E" = ME ™ + kn(b(tn) + rv(tn))-



